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A B S T R A C T

Prediction the inside environment variables in greenhouses is very important because they

play a vital role in greenhouse cultivation and energy lost especially in cold and hot regions.

The greenhouse environment is an uncertain nonlinear system which classical modeling

methods have some problems to solve it. So the main goal of this study is to select the best

method between Artificial Neural Network (ANN) and Support Vector Machine (SVM) to

estimate three different variables include inside air, soil and plant temperatures (Ta, Ts,

Tp) and also energy exchange in a polyethylene greenhouse in Shahreza city, Isfahan pro-

vince, Iran. The environmental factors which influencing all the inside temperatures such

as outside air temperature, wind speed and outside solar radiation were collected as data

samples. In this research, 13 different training algorithms were used for ANN models (MLP-

RBF). Based on K-fold cross validation and Randomized Complete Block (RCB) methodology,

the best model was selected. The results showed that the type of training algorithm and

kernel function are very important factors in ANN (RBF and MLP) and SVM models perfor-

mance, respectively. Comparing RBF, MLP and SVMmodels showed that the performance of

RBF to predict Ta, Tp and Ts variables is better according to small values of RMSE and MAPE

and large value of R2 indices. The range of RMSE and MAPE factors for RBF model to predict

Ta, Tp and Ts were between 0.07 and 0.12 �C and 0.28–0.50%, respectively. Generalizability

and stability of the RBF model with 5-fold cross validation analysis showed that this method

can use with small size of data groups. The performance of best model (RBF) to estimate the

energy lost and exchange in the greenhouse with heat transfer models showed that this

method can estimate the real data in greenhouse and then predict the energy lost and

exchange with high accuracy.
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Nomenclature

Q Heat transfer (W)

a Heat transfer coefficient (W/m2 K)

m Wind speed (m/s)

I Solar radiation (W/m2)

T Temperature (K)

F View factor (-)

E Emission coefficient (-)

A Surface area (m2)

cp Specific heat capacity (J/kg K)

d Thickness (m)

V Volume (m3)

Rb�heat Leaf boundary layer resistance (s/m)

lf Mean leaf width (m)

RBF Radial Bias Function

SVM Support Vector Machine

MLP Multilayer Perceptron

BP Back Propagation

Subscripts

a� p Inside air to plant

s� ss Upper to lower soil

s� p Soil to plant

ri� p Inside roof to plant

a Inside air

s Inside soil

ri Inside roof

s� ri Soil to inside roof

ss Lower layer of inside soil

p Plant

a� ri Inside air too inside roof

a� s Inside air to soil

Greek symbols

q Density (kg/m3)

r Stefan-Boltzmann constant (W/m2 K4)

ks Soil thermal conductivity (W/m K)
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1. Introduction

Agricultural greenhouses are source-conserving, socially sup-

portive, commercially competitive, environmentally sound

and rely on planting techniques, equipment management

and constructive materials. The aim of these structures are

to decrease agro-chemicals, energy and water consumption

as well as waste production [1]. These goals can be obtained

by some methods such as: efficient management of climatic

variables, use of renewable and sustainable energy sources

instead of fossil fuels, apply the suitable greenhouse covering

materials and perfect physical properties with low generation

of after-use waste and optimization of all applied materials

for the plants. The level of inside environment control

changes from the basic simple type of greenhouse to the fully

closed conditioned greenhouse [2].

Typical conventional greenhouses in Iran have a plastic

film covering the slanted front roof without using any blanket

or thermal screen during the night. In winter, outside solar

radiation is low and the air temperature even falling to below

�20C�. The growers in such greenhouses must provide suit-

able environment conditions for plant growth and try to

maintain good and economic temperature inside the green-

house. On the other hand, facing temperature stresses (high

or low) may lead to dead or burst the diseases or fungal in

plants. These maintain should satisfy the grower and make

a good market. Therefore, having an accurate predictive

model of temperature in such greenhouses to inform the

farmers about future conditions to reduce financial losses

has a great importance [3].

Many modeling approaches have been utilized to help the

farmers to have a good condition in greenhouse; such as

mechanism, transfer function and black-box modeling. The

mechanism model provides a clear physical explanation of
the greenhouse environment, like the early static and

dynamic model presented by Bot [4] or improved models pre-

sented by Van Henten [5] and De Zwart [6]. Static and dynamic

models are used for this purpose as a function of the metro-

logical conditions and the parameters of the greenhouse com-

ponents [7,8]. The transfer function model has a simple

structure [9,10], but its application is limited to linear sys-

tems. The black-box model is based on input and output data

and is suitable for both linear and nonlinear modeling [11–13].

So researches try to develop these models and apply them in

greenhouses to satisfy the farmers and to reduce the final

cost [14–16]. He and Ma [17] applied BP neural network with

PCA for modeling the internal greenhouse humidity in China.

The results showed that stepwise regression method was less

accurate than the BPNN based on PCA. Taki et al. [18], pre-

sented a paper to compare some mathematical models

(include dynamic and Multiple Linear Regression (MLR)) with

innovative method (Artificial Neural Network) and select the

best one to predict inside air and roof and energy lost in a

semi-solar greenhouse in Iran. Results showed that the per-

formance of MLP model was better based on the small RMSE

and MAPE and large value of EF parameters.

In the past few decades, many new training algorithms

have been proposed to overcome the drawbacks of traditional

neural networks and to increase their reliability. In this para-

digm, one of the significant developments is a class of kernel

based neural networks called Support Vector Machines

(SVMs), the principle of which is rooted in the statistical

learning theory and method of structural risk minimization

[19]. Support Vector Machines (SVMs) have found wide appli-

cation in several areas including pattern recognition, regres-

sion, multimedia, bio-informatics and artificial intelligence

[20–21]. Yu et al. [2], presented a novel temperature prediction

model based on a least squares support vector machine
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(LS-SVM) model with parameters optimized by improved par-

ticle swarm optimization (IPSO). The results showed that IPSO

can predict the maximum and minimum temperature with

more accuracy than BPNN.

Because of the huge fossil energy sources in Iran, most

greenhouses use high level of energy in all seasons. Also,

there is no precise control on the inside environment factors

of greenhouses in Iran. Therefore, this research was con-

ducted for the first time in a conventional greenhouse in Iran,

and its main objective is the feasibility of using artificial intel-

ligence (MLP, RBF and SVM models with k-fold cross-

validation) to control climate conditions as well as energy

consumption. Based on the above comprehensive literature,

there is no research in Iran on this subject. Also in this

research, Randomized Complete Block (RCB) methodology

was used as a new idea for analysis the type of training algo-

rithm and kernel function for ANN and SVM models, respec-

tively. Similar to this type of analysis, has ever been seen in

researches.

2. Methodology

2.1. Polyethylene greenhouse structure

In this study, a conventional greenhouse with 5 spans and

1200 m3 was selected. The orientation of this greenhouse is

East–West (Fig. 1). Experiments were down in the greenhouse

which cucumber was grown. The greenhouse was only

heated overnight, using gas heating systems and so we could

have the total energy consumption.

2.2. Artificial neural network

Prior to any ANN training process with the trend free data, the

data must be normalized over the range of [0, 1]. This is nec-

essary for the neurons’ transfer functions, because a sigmoid

function is calculated and consequently these can only be

performed over a limited range of values. If the data used

with an ANN are not scaled to an appropriate range, the net-

work will not converge on training or it will not produce

meaningful results. The most commonly employed method
Fig. 1 – Type of selected greenhouse at Shahreza city,

Isfahan province.
of normalization involves mapping the data linearly over a

specified range, whereby each value of a variable x is trans-

formed as follows [22]:

xn ¼ x� xmin

xmax � xmin
� ðrmax � rminÞ þ rmin ð1Þ

where x is the original data, xn the normalized input or output

values, xmax and xmin are the maximum and minimum values

of the concerned variable, respectively. rmax and rmin an corre-

spond to the desired values of the transformed variable range.

A range of 0.1–0.9 is appropriate for the transformation of the

variable onto the sensitive range of the sigmoid transfer

function.
2.2.1. Multilayer Perceptron (MLP) algorithm
MLP is a feed-forward layered network with one input layer,

one output layer, and some hidden layers. Every node com-

putes a weighted sum of its inputs and passes the sum

through a soft nonlinearity. The soft nonlinearity or activity

function of neurons should be non-decreasing and differen-

tiable. The most popular function is unipolar sigmoid [22]:

fðhÞ ¼ 1
1þ e�h

ð2Þ

The network is in charge of vector mapping, i.e. by inserting

the input vector, xq the network will answer through the vec-

tor zq in its output (for q ¼ 1;2; . . . ;Q). The aim is to adapt the

parameters of the network in order to bring the actual

output zq close to corresponding desired output dq

(for q ¼ 1; 2; . . . ;Q). The most popular method of MLP training

is the Back-Propagation (BP) algorithm, and in literatures

there exist many variants of this algorithm. This algorithm

is based on minimization of a suitable error cost function [23].

In this study, Basic Back-propagation (BB) algorithm was

employed. In this work, the learning rules of Gradient Descent

Momentum (GDM) and Levenberg-Marquardt (LM) were con-

sidered. No transfer function for the first layer was used.

For the hidden layers the sigmoid functions were used, and

for the output layer a linear transfer function was applied

as desired for estimating problems. We used an N-fold cross

validation method that in this method data are randomly

divided into two sets; training set and cross validation set

[23]. Schematic diagram of MLP algorithm are illustrate in.
2.2.2. Radial basis function (RBF) algorithm
One type of ANN is the radial basis function (RBF) neural net-

work which uses radial basis functions as activation func-

tions. This ANN is a linear combination of radial basis

functions. Radial Basis Functions (RBF) networks form a spe-

cial architecture of neural networks that present important

advantages compared to other neural network types, includ-

ing simpler structure and faster learning algorithms [24].

RBF is a feed-forward neural network model with good perfor-

mance and it has already proved its universal approximation

ability with no local minima problem [24]. An RBF has a single

hidden layer. Each node of the hidden layer has a parameter

vector called center. This center is used to compare with the

network input vector to produce a radially symmetrical

response. Responses of the hidden layer are scaled by the

connection weights of the output layer and then combined



Fig. 2 – A typical RBF network configuration [24].
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to produce the network output. A typical RBF network config-

uration is shown in Fig. 2 for a single output, where the out-

puts of the nonlinear activation are combined linearly with

the weight vector b of the output layer to produce the network

output ym:

ym ¼
XM
i¼0

biui ð3Þ

In which bi is the joint weighted value of the ith basis func-

tion. The most commonly used radial base is the Gaussian

function given as:

uiðxÞ ¼ exp �kx� cik
r2
i

2
 !

ð4Þ

where ci and ri are center and spread of the ith RBF node.

Training the radial basis function neural network is done

in two steps. In the first step centers are selected from the

training data (without training) or constructed by clustering

the training data. The second step is basically a linear estima-

tion of one weighting vector using ordinary least squares. RBF

is an interpolating network. It can be built using all the avail-

able training points, or it can be built using reduced number

of points. The selection of centers can then be performed by

clustering the training data. There are three types of learning

strategies used in selecting RBF centers; fixed randomly

selected centers, self-organized center selection, and super-

vised selection of centers. A number of training algorithms

has been developed for training of RBF networks [25]. Orthog-

onal least square (OLS) techniques are self-organized tech-

nique, and have been employed to select centers so that

adequate and efficient RBF network can be obtained. The

OLS uses gram-Schmidt algorithm for center selection and

center updating of RBF network, while adaptive gradient des-

cent procedure, described in Haykin [19], was used to adapt

the weights. The network parameters are found such that

they minimize a cost function:

min J ¼
XQ
i¼1

ðjymi � ydij2Þ ð5Þ

where Q is the number of training pattern, while ym and yd are

the network output and desire target output, respectively.

This type of learning strategy has been adopted in this work.
In this research, for MLP and RBFmodels, some of different

training algorithms were applied and finally based on the sta-

tistical analysis, the best one was selected. Table 1 shows the

list of applied training algorithms for ANN models.
2.3. Support vector Machine (SVM)

The Support Vector Machine (SVM), which has been used in

this study, provides a computational advantage over standard

SVM by converting quadratic optimization problem into a sys-

tem of linear equations (Fig. 3). SVM intelligent approach con-

siders the problem of approximating a given dataset fðx1; y1Þ;
ðx2; y2; . . . ; ðxn; ynÞg with the following nonlinear function [26]:

fðxÞ ¼ hw;UðxÞi þ b ð6Þ
where h::; :i is dot product, UðxÞ is the nonlinear function that

performs regression, b and w are bias terms and weight vec-

tor, respectively.

The optimization problem of SVM is formulated as [27]:

minw;b;eJðw; eÞ ¼ 1
2 kwk2 þ 1

2 c
XN
k¼1

e2k

s:t:yk ¼ hw;UðxkÞi þ bþ ek; k ¼ 1;2; :::; k

8><
>:

9>=
>; ð7Þ

where c is a regularization parameter (also called penalty

parameter, c P 0) and ek is the regression error for N training

objects. To solve the optimization problem, Lagrange function

constructed as follows [28]:

Lðw; b; e; aÞ ¼ 1
2
kwk2 þ 1

2
c
XN
k¼1

e2k

�
XN
k¼1

ak hw;UðxkÞi þ bþ ek � yk

� � ð8Þ

where ak is the Lagrange multiplier and the sample whose

Lagrange multiplier is not equal 0, is the support vector.

The solution of Eq. (8) is determined by partially differen-

tiating with respect to w, b, ek and ak [27].
2.4. K-fold cross validation

Cross-validation is a measurement of assessing the perfor-

mance of a predictive model, and statistical analysis will gen-

eralize to an independent dataset. There are many types of

cross-validation, such as repeated random sub-sampling val-

idation, K-fold cross-validation, K � 2 cross-validation, leave-

one-out cross-validation and so on. In this study, we pick up

K-fold cross- validation for selecting parameters of model

[30–32].

The K-fold cross-validation is a technique of dividing the

original sample randomly into K sub-samples. It includes 3

steps [32]:

Step 1: Divide the data K roughly into equal parts;

Step 2: For each i ¼ 1;2; 3; . . . ;K fit the model with parame-

ter c or other K�1 parts, giving a�kðcÞ and compute its error in

predicting the kth part:

EkðcÞ ¼
X

i2kth part

½yi � xia
�kðcÞ�2 ð9Þ

Step 3: Do this for many values of c and choose the value of c

that makes smallest error.



Table 1 – Syntax of various training algorithms.

Training algorithm Function Symbol Class

Levenberg–Marquardt back propagation Trainlm T1 Quasi-Newton (QD)
Bayesian regularization Trainbr T2 Bayesian regulation back propagation
Scaled conjugate gradient back propagation Trainscg T3 Conjugate gradient back propagation
Resilient back propagation (Rprop) Trainrp T4 Resilient back propagation
Variable learning rate back propagation Traingdx T5 Self-adaptive learning rate
Gradient descent with momentum back propagation Traingdm T6 Additive Momentum
gradient descent with adaptive learning rate back propagation Traingda T7 Self-adaptive learning rate
Gradient descent back propagation Traingd T8 Gradient descent back propagation
BFGS quasi-Newton back propagation Trainbfg T9 Quasi-Newton (QD)
Powell–Beale conjugate gradient back propagation Traincgb T10 Conjugate gradient back propagation
Fletcher–Powell conjugate gradient back propagation Traincgf T11
Polak–Ribiere conjugate gradient back propagation Traincgp T12
One step secant back propagation Trainoss T13 Quasi-Newton (QD)

Fig. 3 – Architecture of SVM model [29].
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2.5. Internal and external climate data

In this research, SHT11 sensors were used to measure both

temperature and the relative humidity inside and outside

the greenhouse. The accuracy of this device is ±0.4% at 20 �C
and the precision measurement of the moisture is ±3% for a

clear sky. Also, the TES1333R pyranometre was used for mea-

sure the global solar radiation. It is a measure of global radi-

ation of the spectral band solar in the 400–1110 nm. Its

measurement accuracy is approximately ±5%.

2.6. Energy exchange in greenhouse

In this section some of heat exchange equations in green-

house were discussed. The goal of this part is to show the

ability of the best soft computing model to adopt the energy

exchange in greenhouse for environmental controlling. Some

of main energy transferred between greenhouse elements by

convection and conduction is expressed [33,34]:

Qa�p ¼ Ap � aa�pðTa � TpÞ ð10Þ
Qa�s ¼ As � aa�sðTa � TsÞ ð11Þ

Qs�ss ¼ As � ks=dsðTs � TssÞ ð12Þ

Qa�ri ¼ Ari � aa�riðTa � TriÞ ð13Þ

Qs�ri ¼ As � Es � Eri � Fs�ri � rðT4
s � T4

riÞ ð14Þ

Qs�p ¼ As � Es � Ep � Fs�p � rðT4
s � T4

pÞ ð15Þ

Qri�p ¼ Ari � Eri � Ep � Fri�p � rðT4
ri � T4

pÞ ð16Þ

Empirical relations reported in the literatures to estimate the

heat transfer coefficients between the different surfaces in a

greenhouse, are as follows [33,34]:

aa�p ¼ qa � cpa=Rb�heat ð17Þ

aa�s ¼ 1:7jTa � Tsj
1
3 if Ta < Ts

aa�s ¼ 1:3jTa � Tsj0:25 if Ta P Ts

ð18Þ

aa�ri ¼ 3jTa � Trij1=3 ð19Þ
In Eq. (17), (Rb�heat) is the boundary layer resistance to convec-

tive heat transfer and can calculate by [33–34]:

Rb�heat ¼
1174

ffiffiffiffi
lf

p
ðlf � jTc � Taj þ 207v2

aÞ
1
4

ð20Þ

The input data for solution are given in Table 2. In order to

control all effective inside and outside parameters on temper-

ature prediction, simulation was done between 9:00 am to

16:00 pm in a conventional polyethylene greenhouse located

Shahreza city.

2.7. Performance evaluation criteria

Different performance criteria have been used in literature to

assess model’s predictive ability. The mean absolute percent-

age error (MAPE), root mean square error (RMSE) and coeffi-

cient of determination (R2) are selected to evaluate the

forecast accuracy of the models in this study [34]:

MAPE ¼ 1
n

Xn
i¼1

dv� pv
dv

����
����� 100 ð21Þ

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1ðdv� pvÞ2
n

s
ð22Þ



Table 2 – Input parameters used for calculation [34].

Parameter Value Parameter Value

qa 1:29 T0
Ta

As 200
Es 0.7 ks 0.86
cp�a 1000 ds 0.65
r 5:67051� 10�8 Ep 1� sc�Il

Fs�ri 1.00 Fs�c Fs�c ¼ 1� sc�Il

Eri 0.90 Ari 300
Ap 2LAI� As kc�Il 0.64
lf 0.05 va 0.09
LAI 1 Fri�p sc�Il ¼ e�kc�Il�LAI
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R2 ¼
Pn

i¼1ðdv� dvÞ � ðpv� pvÞPn
i¼1ðdv� dvÞ �Pn

i¼1ðpv� pvÞ

" #2
ð23Þ

where n is number of data, dv is the desired value and pv is

the predicted value. The best model is achieved when the

RMSE and MAPE are minimized and R2 is maximized. The lin-

ear regression line between dv and pv was also used to assess

the models. From this perspective, the best model is the one

that has the linear regression line with slope close to one,

intercept close to zero and coefficient of determination close

to 1 (pv = 1.00 dv + 0.00, R2 = 0.99).

3. Results and discussion

3.1. Correlation coefficient between all variables

The procedure applied in this research started by distin-

guishes the correlation coefficients between all variables

(Fig. 4). Studied the correlation coefficient among different

characters makes it possible to decide more precisely about

selected indirect selection indices and removing ineffective

characters. As we can see, the inputs have a significant corre-

lation to each other. This fact is because of these inputs have

a very complex dynamic relation to each other. Every changes

in one of them, can change the others and it is one of the

problems to modeling the inside greenhouse environment

by physical methods. In the view of classical feedback control,

such a system is poorly controlled if disturbance monitors

and model based feed forward control is not applied. The

outside wind speed did not have a significant relation with

outside solar radiation (because of unique climate in

this region). Other variables have a strong relation with
 Inside air temperature (Ta )

Plant temperature (Tp )

Inside soil temperature (Ts)
(-0.575 , 0

(-0.605 , 0.00) (0

(

(0.973 , 0.00)

(-0.470 , 0.00)

(-0.586 , 0.
(0.178 , 0.00)

(-0.465 , 0.00)(-0.591 , 0.00)

(0.987 , 0.00)

Fig. 4 – Correlation coefficient between all inputs and outputs (T

the second number shows the value of p-value).
themselves, so we used all the variables for three future

models and for each one try to decrease the predictive error.

3.2. Results of ANN (MLP and RBF) and SVM models

In this research, application of ANN (MLP and RBF) and SVM

models was evaluated for prediction the inside environment

variables in a polyethylene greenhouse. Because there is a sig-

nificant correlation between inside and outside variables

(Fig. 4), it is possible to use predictive modes to evaluate the

changes in inside parameters based on outside variables. This

research is focus on energy and monitoring in a conventional

greenhouse and based on the literatures, such as this method

has not been seen for this region. This section includes the

parts:

I. Initially, the optimal parameters of ANN (MLP and RBF)

and SVM models are found.

II. Then their performance is compared with each other.

III. Finally, the sensitivity analysis of the optimal model

will evaluate.

3.2.1. Selection the training algorithm for ANN (MLP) model
by DOE
The results of neural networks optimization models with dif-

ferent networks, dependent on the initial random values of

the synaptic weights. So, the results in general will not be

the same in two different trials even if the same training data

have been used [35]. So in this research K-fold cross validation

(K = 5 with 4 replications) was used and finally 20 different

data samples were made for train and test of ANN models.
Outside air temperature (To)

Wind speed (vo)

Solar radiation on the roof (Io).00)

(-0.497 , 0.00)

.971 , 0.00)

-0.643 , 0.00)

(-0.566 , 0.00)

00)

(0.55, 0.226)(0.441 , 0.00)

he first number in brackets shows the correlation value and



Table 3 – The results of the R2 variance analysis for MLP-ANN.

Train Test Total

Source DF Ta Tp Ts Ta Tp Ts Ta Tp Ts

Train Alghorithm 12 0.41** 0.14** 0.18** 0.01** 0.14** 0.19** 0.41** 0.14** 0.19**

Block (Data set) 19 0.005** 0.01* 0.01* 0.383* 0.01* 0.01* 0.006** 0.01* 0.01*

Error 228 – – – – – – – – –
Total 259 – – – – – – – – –

* Significant at 5% (The values of the numbers inside the table represent the mean squares of the R2 criterion).

** Significant at 1% (The values of the numbers inside the table represent the mean squares of the R2 criterion).
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Fig. 5 – The results of the R2 average comparison (13 algorithms) for MLP model in train and test phases (a, c and e for train; b,

d and f for test) of Ta (a and b), Tp (c and d) and Ts (e and f) variables.
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Also, the type of training algorithm can greatly affect the

performance of models [36]. So, 13 types of training algo-

rithms (Table 1) were used to train the ANN models. In this
research, a novel statistical analysis was used. Randomized

Complete Block (RCB) design was used to compare the perfor-

mance of training algorithms as an innovative idea. So, the
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different number of neurons in hidden layer (a, b and c for Ta, Tp and Ts).

Table 4 – The results of the R2 variance analysis for RBF-ANN.

Train Test Total

Source DF Ta Tp Ts Ta Tp Ts Ta Tp Ts

Train Alghorithm 12 0.47** 0.04** 0.02** 0.47** 0.04** 0.02** 0.47** 0.04** 0.02**

Block (Data set) 19 0.23** 0.03** 0.01** 0.29** 0.04** 0.01** 0.24** 0.03** 0.01**

Error 228
Total 259

*Significant at 5% (The values of the numbers inside the table represent the mean squares of the R2 criterion and DF is the degree of freedom).

** Significant at 1% (The values of the numbers inside the table represent the mean squares of the R2 criterion and DF is the degree of freedom).
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type of training algorithm was considered as the experimen-

tal treatments. The MLP model was also trained by each of

training algorithm with 20 different data set and 20 times.

The results of replications were considered as experimental

blocks in RCB design. The results of R2 variance analysis for

MLP neural network model in three stages of training, testing

and total for the three variables (Ta, Tp and Ts) are shown in

Table 3. As the results show, the effect of training algorithm

type on the correlation between the actual and predicted val-

ues (R2) in all stages, is significant (level of 1%). The same

result is obtained for the type of data set (test blocks). With

understanding the effect of training algorithms on MLP
performance, the R2 average comparison of the MLP model

for the three variables Ta, Tp and Ts in the two phases of train-

ing and testing with the Least Square Difference (LSD) at the

5% level was analyzed (Fig. 5).

As Fig. 5 shows, there are significant differences between

training algorithms. The trainlm algorithm for the three out-

put variables has a significantly higher R2 than other algo-

rithms. The performance of trainbr is also compatible with

the trainlm algorithm. The worst performance for the MLP

neural network in this research is traingdx. In general, the

training algorithms were clustered into 7 categories for Ta

estimation. In contrast, this parameter for Tp and Ts
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Fig. 7 – The results of training algorithm (13 algorithms) on RBF model performance in train and test phases (a, c and e for

train; b, d and f for test) of Ta (a and b), Tp (c and d) and Ts (e and f).
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algorithms were clustered in 4 groups. This is because of the

complexity and variations of Ta than Tp and Ts. Other param-

eters that can affect the prediction function of the MLP model

are the number of neurons in the hidden layer and the type of

activation function. Fig. 6 shows the mean value of R2

changes for logsig and tansig transfer functions and the

number of different neurons in the hidden layer for the

trainlm algorithm in training and testing.

As the results indicate, increasing number of neurons in

the hidden layer will uptrend the R2 value. In this research,

21, 9, and 9 neurons in the hidden layer were selected as

the best number of neurons for Ta, Tp and Ts modeling by

MLP network, respectively. Adding a number of neurons more

than these values will not change much in the R2 for MLP
model. Also, the results showed that the tansig as an activa-

tion function in the hidden layer was better than logsig.

3.2.2. Selection the training algorithm for ANN (RBF) model
As Fig. 6 showed, the type of data set and training algorithm

can mainly affect the predictive function of ANN models.

Similar to the MLP model, RCB design was used to compare

the statistical function for RBF model. Training algorithms

and dataset determine the treatment and block of the RCBD

design, respectively. Table 4 shows the ANOVA analysis for

three output variables (Ta, Tp and Ts) at three stages of the

network. The values of the numbers inside the table represent

the mean squares (MS) of the R2 criterion for the RBF model.

As the results show, training algorithm and type of data set
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has a significant effect on RBF network prediction perfor-

mance (in all cases, p-value <0.05).

After analysis of variance, using LSD method at 5% level,

the average of R2 for different training algorithms was com-

pared with each other (Fig. 7). As it can show, training algo-

rithms for all the output variables were clustered in 8, 6 and

5 groups. Fig. 7 shows that the results of the statistical com-

parisons are similar to each other in two phases of training
Table 5 – The results of the R2 variance analysis for SVM mode

Train

Source DF Ta Tp Ts

Kernel function 3 0.89** 0.00** 0.00**

Block (Data set) 19 0.00* 0.00** 0.00**

Error 57
Total 79

* Significant at 5% (The values of the numbers inside the table represent t

** Significant at 1% (The values of the numbers inside the table represent t
and testing. This means that if the learning algorithm has a

good performance to find the relationship between variables

in training step, the model almost can be successful at the

test phase. The difference between mean values of R2 for

trainlm and trainbr algorithms in all output variables at both

stages of training and testing was not significant. Also, the

performance of these algorithms has a significant difference

with other algorithms. But based on experience, we chose

trainbr algorithm as the best training algorithm for RBF. Here,

unlike MLP, the T8 algorithm had the worst performance

compared to others.

In RBF model, the spread parameter and hidden size can

affect the performance in all cases. Fig. 8 shows the effect

of these parameters on the R2 value for the RBF model with

trainbr algorithm. As it can show, with increasing the hidden

size, the R2 value also increase. The process of increasing and

changing of R2 is also dependent on the spread parameter val-

ues. For Ta, S = 0.5 with 15 neurons, for Tp, S = 0.1 with 15 neu-

rons and for Ts, S = 1 with 15 neurons in RBF network design

was selected.

3.2.3. Selection the best kernel function for SVM model
The model’s prediction performance can be affected by the

type of kernel function [36]. In this research, RCB design

was used to compare the type of kernel function. For SVM

model, 4 kernel functions including linear (Poly 1), second-

order polynomial (Poly 2), third-order polynomial (Poly 3)

and radial bias (RBF) function were used. Training algorithms

and dataset, determine the treatment and block of RCB

design, respectively. Table 5 shows the results of ANOVA for

SVM model. As the results show, training algorithm and type

of data set have significant effect on SVM model prediction

performance (in all cases, p-value <0.05). After analysis of

variance, using LSD method at 5% level, the average of R2

for different training algorithms was compared with each

other (Fig. 9). The results show that liner function is the best

training algorithm for SVM model.

Recently, some of researchers used SVM model in green-

house. Yu et al. [2], presented a novel temperature prediction

model based on support vector machine and improved parti-

cle swarm optimization (IPSO). The IPSO with probability of

mutation was employed to optimize the required hyper

parameters of the SVM model. The performance of the

IPSO–SVM model compared with traditional modeling

approaches by applying it to predict solar greenhouse temper-

atures. The results showed that its predictions of the maxi-

mum and minimum temperature were more accurate than
l.

Test Total

Ta Tp Ts Ta Tp Ts

0.60** 0.00** 0.00** 0.82** 0.00** 0.00**

0.01** 0.00** 0.01* 0.00* 0.00** 0.00*

he mean squares of the R2 criterion and DF is the degree of freedom).

he mean squares of the R2 criterion and DF is the degree of freedom).
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Fig. 9 – The result of the R2 (4 algorithms) for SVM model in train and test phases (a, c and e for train; b, d and f for test) of Ta,

Tp and Ts.
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those of the standard support vector machine and back prop-

agation neural network.

3.3. Selection the best model between MLP, RBF and SVM

In the previous sections, the best training algorithm and ker-

nel function for MLP, RBF and SVM models were selected.

Here, our goal is to evaluate, compare and select the best pre-

dictive model. As the results showed, the type of data set has

a significant effect on the performance of the models. So, 100

different data sets were used to compare the results of the

models with each other. In Table 6, the results of RMSE, MAPE

and R2 for MLP, RBF and SVM networks are presented based on

the percentage of the training data set. In this table, by reduc-

ing the size of training data sets, the generalizability charac-

teristics of the MLP, RBF and SVM models can evaluate. The

results show that the standard deviation values for RBF errors

are less than the MLP and SVM, so the RBF model is less sen-

sitive to changing the training dataset than other models. The

results indicate that by decreasing the number of training set,
the training errors will decrease but the test phase errors will

increase. Although the error values of the three models are

acceptable in all sizes of the training set. The comparison of

the results shows that the RBF model has less predictive

errors.

Based on the results of Table 6, the RBF model was selected

to predict inside environment variables in this research.

Fig. 10 shows the results of the RBF model evaluation for

50% of the total data for training. As the results show, there

is a very good agreement between the actual and predicted

data by this model.

3.4. The results of sensitivity analysis

In this section, the sensitivity analysis was carried out. The

current well-established sensitivity analysis methods can be

classified into two categories: local and global techniques

[37]. In this research, local sensitivity technique was selected

and used. Local approaches estimate the effect of a single fac-

tor on the outputs while keeping all the others fixed at their



Table 6 – Evaluation the MLP, RBF and SVM methods versus the size of training data sets.

Train Test

TS* Model RMSE MAPE R2 RMSE MAPE R2

80 Ta MLP 0.17 ± 0.01 0.80 ± 0.09 0.82 ± 0.03 0.20 ± 0.02 0.93 ± 0.10 0.76 ± 0.05
RBF 0.13 ± 0.00 0.58 ± 0.03 0.89 ± 0.01 0.13 ± 0.01 0.59 ± 0.07 0.89 ± 0.03
SVM 0.17 ± 0.01 0.69 ± 0.03 0.83 ± 0.02 0.21 ± 0.03 0.89 ± 0.08 0.73 ± 0.05

Tp MLP 0.19 ± 0.00 0.74 ± 0.23 0.99 ± 0.00 0.20 ± 0.05 0.75 ± 0.23 0.99 ± 0.00
RBF 0.12 ± 0.01 0.44 ± 0.03 0.99 ± 0.00 0.12 ± 0.01 0.44 ± 0.06 0.99 ± 0.00
SVM 0.19 ± 0.00 0.85 ± 0.01 0.99 ± 0.00 0.26 ± 0.04 1.03 ± 0.10 0.97 ± 0.00

Ts MLP 0.10 ± 0.00 0.44 ± 0.03 0.98 ± 0.00 0.12 ± 0.01 0.51 ± 0.05 0.98 ± 0.00
RBF 0.07 ± 0.01 0.28 ± 0.07 0.99 ± 0.00 0.07 ± 0.01 0.28 ± 0.08 0.99 ± 0.00
SVM 0.11 ± 0.00 0.54 ± 0.01 0.98 ± 0.00 0.15 ± 0.02 0.64 ± 0.06 0.97 ± 0.00

60 Ta MLP 0.17 ± 0.02 0.75 ± 0.11 0.83 ± 0.04 0.21 ± 0.03 0.94 ± 0.12 0.74 ± 0.07
RBF 0.13 ± 0.01 0.57 ± 0.05 0.89 ± 0.01 0.13 ± 0.01 0.57 ± 0.06 0.89 ± 0.02
SVM 0.17 ± 0.01 0.68 ± 0.04 0.82 ± 0.02 0.23 ± 0.03 0.94 ± 0.05 0.70 ± 0.07

Tp MLP 0.16 ± 0.01 0.64 ± 0.04 0.99 ± 0.00 0.19 ± 0.01 0.76 ± 0.05 0.99 ± 0.00
RBF 0.11 ± 0.01 0.42 ± 0.04 0.99 ± 0.00 0.12 ± 0.01 0.45 ± 0.03 0.99 ± 0.00
SVM 0.19 ± 0.00 0.88 ± 0.02 0.99 ± 0.00 0.30 ± 0.04 1.16 ± 0.07 0.97 ± 0.00

Ts MLP 0.10 ± 0.02 0.43 ± 0.09 0.98 ± 0.00 0.13 ± 0.02 0.54 ± 0.08 0.98 ± 0.00
RBF 0.06 ± 0.00 0.26 ± 0.02 0.99 ± 0.00 0.06 ± 0.00 0.26 ± 0.02 0.99 ± 0.00
SVM 0.11 ± 0.00 0.56 ± 0.01 0.98 ± 0.00 0.17 ± 0.02 0.72 ± 0.04 0.97 ± 0.00

40 Ta MLP 0.17 ± 0.01 0.78 ± 0.08 0.82 ± 0.03 0.24 ± 0.03 1.05 ± 0.08 0.67 ± 0.09
RBF 0.14 ± 0.00 0.60 ± 0.03 0.89 ± 0.01 0.14 ± 0.00 0.60 ± 0.04 0.89 ± 0.01
SVM 0.18 ± 0.01 0.67 ± 0.05 0.81 ± 0.03 0.25 ± 0.03 1.01 ± 0.06 0.65 ± 0.07

Tp MLP 0.17 ± 0.02 0.65 ± 0.12 0.99 ± 0.00 0.22 ± 0.03 0.82 ± 0.09 0.99 ± 0.00
RBF 0.12 ± 0.01 0.42 ± 0.06 0.99 ± 0.00 0.12 ± 0.01 0.45 ± 0.03 0.99 ± 0.00
SVM 0.20 ± 0.01 0.91 ± 0.05 0.98 ± 0.00 0.37 ± 0.07 1.31 ± 0.14 0.96 ± 0.01

Ts MLP 0.11 ± 0.01 0.47 ± 0.06 0.98 ± 0.00 0.15 ± 0.02 0.65 ± 0.10 0.97 ± 0.00
RBF 0.06 ± 0.00 0.26 ± 0.02 0.99 ± 0.00 0.06 ± 0.00 0.26 ± 0.02 0.99 ± 0.00
SVM 0.12 ± 0.00 0.57 ± 0.02 0.98 ± 0.00 0.21 ± 0.03 0.81 ± 0.08 0.95 ± 0.00

* TS: Training Size.
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nominal values. Table 7 shows the results of sensitivity

analysis.

The results of Table 7 show that all the outputs (Ta, Tp and

Ts) definitely depended on outside air temperature (To). It is

true based on heat transfer equations. Some of researchers

applied inside and outside variables for estimation the green-

house environment, but for more accurate, we used only out-

side variables as the inputs. A lot of researches used dynamic

models since 1960 to 2016 for simulation and modeling the

greenhouse environment. Joudi and Farhan [38], presented a

dynamic model to predict the inside air and soil temperature

in an innovative greenhouse in Iraq. The input parameters of

this model collected from measured meteorological condi-

tions and the thermo-physical properties of the greenhouse

components which include the cover, inside air, and soil.

Comparisons between the predicted and measured results

showed good agreement. The absolute error in this dynamic

model was lower that 10% for inside air and soil temperature.

Du et al. [39], applied the simulation method to predict the

inside air and soil in a greenhouse with heat pipe system. The

model validated with experimental data and found to be in

close agreement. The absolute error between predicted and

desired data was about ±20%. The results showed that for

estimation the inside variables in all types of greenhouses,

soft computing models can be very successful than physical

and mathematical models. The results of some researches

are the proofs of conclusion in this research [40–44]. For the
future studies, some of other soft computing models such

as Adaptive Network Based Fuzzy Inference System (ANFIS)

and Gaussian Process Regression (GPR) should be evaluate.

3.5. Energy exchange in greenhouse

The final part of this paper is to comparison the results of RBF,

MLP and SVM models to estimate the total energy exchange

inside the greenhouse by using mathematical Eqs. (10)–(20).

Energy exchange and lost through the greenhouse include

Qri-p, Qs-p, Qa-ri, Qs-ss, Qa-p, Qa-s and Qs-ri that cover the con-

duction, convection and radiation phenomena between some

parts of greenhouse. The inside air, soil and plant tempera-

ture effect these parameters. Figs. 11 and 12 show the com-

parison of RBF, MLP and SVM models to predict energy lost

and exchange. As Fig. 11 shows, the direction of heat fluxes

between inside air and soil until noon is to air because the soil

is warmer than air (incoming solar radiation can warm the

inside soil of greenhouse), but afternoon the direction is to

inside air. The heat exchange direction between inside air

and crop at morning is to air (almost for evapotranspiration)

and before night it will be decrease. One of the main energy

lost corridor at greenhouse is by conduction between top

and underground soil of greenhouse. Fig. 11 shows the direc-

tion of heat lost whole the day (from top to underground).

Finally, the convection heat exchange between inside air

and inside roof of greenhouse especially in winter is the
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Fig. 10 – The agreement between actual and predicted values of Ta, Tp and Ts with RBF model at training and test phases

(a and b; c and d; e and f are the train and test of Ta, Tp and Ts, respectively).
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important factor for energy monitoring in a greenhouse and

can be seen in Fig. 11. The results show that the RBF model

has the best performance in all cases. As it can show, the dif-

ference between the results of RBF and actual data is not sig-

nificant but other models (MLP and SVM) had a significant

difference with RBF model.
Fig. 12 shows the results of radiation heat exchange mod-

eling with all three models between inside roof, soil and

plant. It shows the direction of heat flux from plant to soil

and inside roof. Actually in greenhouse, crop temperature is

higher than soil and roof temperature. As it can show, the

result of RBF model is very similar to actual data.



Table 7 – The results of sensitivity analysis for remove the ineffective variables.

Varaible RMSE MAPE R2

Ta All 0.12 0.52 0.92
All exclude To 0.44 2.07 0.20
All exclude vo 0.13 0.51 0.91
All exclude Io 0.28 1.25 0.58

Tp All 0.11 0.42 0.99
All exclude To 0.79 3.06 0.82
All exclude vo 0.13 0.42 0.99
All exclude Io 0.38 1.43 0.96

Ts All 0.07 0.26 0.99
All exclude To 0.50 2.06 0.77
All exclude vo 0.09 0.33 0.99
All exclude Io 0.19 0.75 0.97
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Fig. 11 – Comparison of hourly energy lost and exchange predicted by RBF, MLP and SVM models (a, b and c convection and d

conduction heat exchange).
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In this paper, we tried to show the fact that innovative

methods are simple and more accurate than physical heat

and mass transfer method to predict the environment

changes. Furthermore, this method can use to predict other

changes in greenhouse such as final yield, evapotranspira-

tion, humidity, cracking on the fruit, CO2 emission and so

on. So the future research will focus on the other soft comput-

ing models such as ANFIS, GPR, Time Series and . . . to select

the best one for modeling and finally online control of green-

house in all climate and different environment.
4. Conclusion

The paper presents a comparison between Artificial Neural

Network (ANN) and Support Vector Machine (SVM) models

to predict three point temperatures (Ta, Tp and Ts) and

energy exchange in a conventional greenhouse at Shahreza

city in Isfahan province, Iran. For this purpose, some inside

and outside variables used as input and the relation between

them was examined. The K-fold cross validation (K = 5 with 4

replications) was used to show the ability of models to pre-
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dict inside parameters. 13 different training algorithms were

used for ANN models. In this research, randomized com-

plete block methodology was used to compare the perfor-

mance of training algorithms for all models as an

innovative idea. All three models were trained by each of

training algorithm with 20 different data set (K = 5 with 4

replications). The results of these 20 replications were con-

sidered as experimental blocks in randomized complete

block design. The results showed that type of training algo-

rithm is very important in all three models. Comparison of

the models showed that RBF has lowest error between other

models. The range of RMSE and MAPE factors for RBF model

to predict Ta, Tp and Ts were between 0.07 and 0.12 �C and

0.28–0.50%, respectively. Also the results showed that RBF

model can estimate the energy exchange and lost in green-

house with high accuracy. Such forecasts can be used by

farmers as an appropriate advanced notice for changes in

temperatures. So they can apply preventative measures to

avoid damage caused by extreme temperatures. More specif-

ically, predicting a greenhouse temperature can not only

provide a basis for greenhouse environment management

decisions that can reduce the planting risks, but also can

be as a basic research for the feedback-feed-forward type

of climate control strategy.
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