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Abstract

Context Habitat loss and fragmentation are main

drivers of biodiversity loss and are occurring at an

accelerating rate globally. Carnivores are often subject

to persecution and conflict with humans, typically

reside in low densities and require large areas for core

habitat and dispersal, which makes them especially

vulnerable to habitat loss and fragmentation.

Objectives This paper identifies, maps and analyses

habitat core areas and connectivity linkages for three

mountain-residing carnivore species of high conser-

vation importance in Iran: Persian leopard (Panthera

pardus saxicolor), Eurasian lynx (Lynx lynx) and

Pallas’s cat (Otocolobus manul).

Methods We used ensemble habitat suitability mod-

eling, and compared the accuracy of ensemble models

with seven separate models based on AUC and TSS.

We applied resistant kernel and factorial least-cost

path analyses to identify population core areas and

corridors across the full distributions of the three

species in Iran.

Results Mean annual temperature, vegetation green-

ness (NDVI), and slope were among the most impor-

tant predictor variables for all three species. We found

ensemble modeling outcompeted all single-method

models in terms of AUC. We found low overlap

between predicted corridor locations of our modeled

species with Protected Areas.

Conclusions Given the fragmented populations of

our studied species in Iran, conserving them will

require integrated landscape-level management to

protect corridors and enhance connectivity, especially

outside of Protected Areas. Optimized landscape
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management to conserve these species will likely

promote conservation of montane landscapes and their

inhabitants in Iran.

Keywords Connectivity � Carnivores � Protected
area � Resistant kernel � Habitat suitability � UNICOR

Introduction

Habitat fragmentation is a landscape-scale process

which is characterized by the division of habitat into

separate patches (Fahrig 2003; Bennett and Saunders

2011). It reduces the structural connectivity of habitat

by increasing the number of patches, decreasing their

size and increasing their isolation (Fahrig 2003).

Connectivity is critical for long-term species conser-

vation, and plays a major role in maintaining genetic

and demographic processes that ensure long-term

viability (Bennett and Saunders 2011; Kaszta et al.

2020a). Connectivity of populations is of paramount

importance to both conserve species locally and to

secure their range shifts in response to future hazards

such as land use change (Cushman et al. 2013; Kaszta

et al. 2019), and climate change (Wasserman et al.

2013). Enhancing connectivity in conservation net-

works may reduce the negative impacts of habitat loss

and fragmentation (Wiens 2006).

Large carnivores are particularly vulnerable to

human persecution and extirpation (Broekhuis et al.

2017; Mohammadi et al. 2019). They live in low

densities and typically have large home ranges (Hilty

et al. 2006; Carrol 2006). Carnivores’ large area

requirements demand vast and connected habitat areas

where they are protected from human persecution.

Increasing land use change and habitat fragmentation

have threatened carnivore populations by reducing

habitat areas and increasing their isolation, leading to a

synergy of increasing direct human-caused mortality,

reduced local carrying capacity, and reduced ability

for populations to be integrated by dispersal or

nomadism (e.g., Cushman et al. 2016; Farhadinia

et al. 2016).

Given that most carnivore populations must now

integrate across networks of multiple protected areas

through dispersal (e.g., Cushman et al. 2018), it is

increasingly inevitable that many dispersing carni-

vores must move between habitat patches through

often dangerous unprotected and developed lands

(Hilty et al. 2006; Elliot et al. 2014; Almasieh et al.

2016). Therefore, for many carnivores in many parts

of the world, protected areas by themselves are not

sufficient to support viable populations (Hilty et al.

2006; Cushman et al. 2016; Macdonald et al. 2019;

Mohammadi et al. 2021c). Regional viability often

requires large core habitat patches which are con-

nected through a network of linkages among them to

ensure long-term viability (Kaszta et al. 2019, 2020a).

Thus, networks of structurally or functionally con-

nected protected areas, rather than isolated protected

areas, are the proper focus of comprehensive conser-

vation planning (Beier et al. 2008; Romportl et al.

2013; Cushman et al. 2016, 2018).

Several methods have been used for connectivity

assessment (Cushman et al. 2013), including least-cost

path modelling (Adriaensen et al. 2003), current flow

(McRae 2006), factorial least-cost path density (Cush-

man et al. 2009), resistant kernels (Compton et al.

2007) and randomized shortest path algorithms (Pan-

zacchi et al. 2016). The factorial least-cost path and

cumulative resistant kernel approaches have proved to

be particularly effective methods if used in combina-

tion across a broad landscape (Moqanaki and Cush-

man 2016; Shahnaseri et al. 2019; Kaboodvandpour

et al. 2021; Mohammadi et al., 2021a,b). These

approaches, coupled with landscape pattern analysis

(McGarigal and Cushman 2002), provide a frame-

work to predict the location of core areas, fracture

zones (where connectivity is attenuated by barriers or

cumulative dispersal cost), and movement corridors

across a range of dispersal abilities (Cushman et al.

2013).

Understanding the different factors that affect

species distribution and habitat selection is important

for carnivore conservation (McClure et al. 2017;

Khosravi et al. 2017; Shahnaseri et al. 2019; Moham-

madi et al., 2021a). Many different habitat suitability

modeling algorithms are available. Among these,

regression-based models such as the Generalized

Linear Model (GLM) (Farashi et al. 2017; Shahnaseri

et al. 2019), Generalized Additive Model (GAM)

(Spencer et al. 2011; Farashi et al. 2017), Multivariate

Adaptive Regression Splines (MARS) (Farashi et al.

2017), and machine-learning models such as Maxi-

mum Entropy (MaxEnt) (Farashi et al. 2017; Moham-

madi et al. 2021b ), Random Forest (RF) (Ashrafzadeh

et al. 2020), Generalized Boosting Model (GBM)
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(Khosravi et al. 2017; Shahnaseri et al. 2019) and

Artificial Neural Network (ANN) (Farashi et al. 2017)

have been widely used.

Recent research has shown that machine-learning

models such as RF may perform better than the

regression-based algorithms (Rodriguez-Galiano et al.

2012; Mi et al. 2017; Cushman et al. 2017). Further-

more, ensemble modeling, in which several species

distribution models (SDMs) are combined to quantify

a range of predictions across more than one set of

uncertainty sources, has been found to often increase

the accuracy of model predictions (Araújo and New

2007; Shahnaseri et al. 2019) and decrease the

uncertainty associated with using a single SDM (Shirk

et al. 2018). However, there is not an extensive

literature about the performance of ensemble model-

ing as compared with single machine learning tech-

niques, especially when it comes to multi-species and

connectivity studies.

In this paper we used a guild of multiple carnivore

species to compare the performance of different

modeling techniques across species, and test whether

ensemble learning provides improvement over indi-

vidual modeling algorithms. This study also focuses

on habitat prioritization for three montane felid

species that can be considered as a proxy for moun-

tainous ecosystem and mountain-dependent conser-

vation with limited resources in Iran.

Pallas’s cat, Eurasian lynx, and Persian leopard

share similarities in their general ecology as they all

are highly dependent on high altitudes in their Iranian

range. Pallas’s cat and Eurasian lynx are distributed in

a highly patchy and fragmented pattern across Iran,

while Persian leopard is more widely distributed and

well connected. Diet, habitat selection, and home

range sizes are substantially different among these

species (Moqanaki et al. 2010; Farhadinia et al. 2016;

Mousavi et al. 2016).

These species reside in rugged and remote montane

regions that are increasingly influenced by humans,

thus there is an urgent need to identify and prioritize

their habitats for management and conservation

(Farhadinia et al. 2019a). All three species are

threatened by anthropogenic landscape change and

human-induced mortalities, particularly habitat loss

and fragmentation and prey depletion (Moqanaki et al.

2010; Mousavi et al. 2016; Farhadinia et al. 2016,

Stein et al., 2016). Persian leopard is also threatened

by poaching, poisoning, and road kill in Iran

(Parchizadeh and Adibi, 2019). Persian leopard is

categorized as endangered (EN) by IUCN (Khorozyan

2008), and Pallas’s cat and Eurasian lynx are listed as

least concern (LC) globally (Breitenmoser et al. 2015;

Ross et al. 2020), although both are rare in Iran.

The aims of this research were to: (1) compare

several modelling methods to predict habitat suitabil-

ity for multiple carnivore species [Persian leopard

(Panthera pardus saxicolor), Eurasian lynx (Lynx

lynx) and Pallas’s cat (Octolobus manul)]; (2) inves-

tigate whether ensemble learning models provide

improvement over single modeling methods, and if

there are significant dissimilarities in the performance

of these methods among different species; (3) deter-

mine the most significant environmental and anthro-

pogenic factors influencing habitat suitability for the

species; (4) define core areas for each species using

resistant kernel modeling and to identify corridor

routes among these core areas using factorial least-

cost path modeling. (5) prioritize the predicted core

habitats according to the probability of connectivity.

The results provide clarity on the drivers of habitat

quality for multiple carnivore species, and the patterns

of habitat extent and connectivity for these species

across Iran. This information will be helpful for

building a conservation strategy and management plan

for conservation of threatened species in Iran.

Materials and methods

Study area and data collection

The study area is the full extent of Iran, which covers

1,648,195 km2 of southwestern Asia. Iran has two

distinct topographic contexts: (1) mountainous areas,

consisting principally of the Alborz and Zagros

Mountains in the north west and extending southeast

through the country, and (2) vast arid plains, mainly in

the central and southern parts of Iran (Fig. 1).

Occurrence points for these species were collected

from different parts of Iran by game wardens of the

Department of Environment and multiple wildlife

researchers during 2000–2019. This produced a total

database of 240, 95 and 113 presence points of the

Persian leopard, Eurasian lynx and Pallas’s cat,

respectively. To reduce spatial-autocorrelation, we

placed circles with two radii (2.5 and 5 km) around

each presence point to exclude proximal points using
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the Spatially Rarify Occurrence Data tool in the

SDMtoolbox (Brown 2014). Because of two distinct

topographic contexts in Iran (mountains, and plains),

topographic heterogeneity was used to set two values

(2.5 km for mountainous areas and 5 km for plains)

based on the mean maximum distance moved by the

Persian leopard per day (Farhadinia et al. 2020). In

addition, we used these values for the two other study

species given that the maximum dispersal ability of the

Eurasian lynx and Pallas’s cat was lower than the

Persian leopard, and therefore they do not require a

larger spatial filter distance. After spatial filtering, we

retained 232, 92 and 102 presence points of the Persian

leopard, Eurasian lynx and Pallas’s cat, respectively,

for habitat modeling. Additionally, we created 1,000

pseudo-absence points for each species for the habitat

modeling. These points were randomly placed across

the study area, excluding the 2.5 km radius circle

around presences to reflect available resources for

each species.

Habitat modeling

Environmental variables including topography, cli-

matic, water, land cover and human disturbance

variables were used as predictor variables. We

acquired a digital elevation model (DEM) from the

30 m Shuttle Radar Topography Mission (SRTM,

downloaded from http://earthexplorer.usgs.gov), and

calculated slope (using Surface Tool) and surface

roughness variables (standard deviation of elevation of

DEM’s cells in the 2.5 km neighborhood using

Neighborhood Tool) using Spatial Analyst Tools in

ArcGIS 10.3. Out of 19 bioclimatic variables (Fick

and Hijmans 2017), we selected six variables that we

believed to be most relevant to predicting the distri-

butions of the focal species: annual mean temperature

(Bio1), max temperature of the warmest month (Bio5),

min temperature of the coldest month (Bio6), annual

precipitation (Bio 12), precipitation of warmest month

(Bio 13) and precipitation of driest month (Bio14)

(http://worldclim.org).

Fig. 1 Study area including Iran and presence points of the Persian leopard, Eurasian lynx and Pallas’s cat in Iran
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The national land-cover map of Iran

(FRWMO 2010) was used to create variables for

distance from agricultural lands, distance from range-

lands, distance from forests and distance from rocks

using the Arc GIS Euclidian Distance Tool. We

extracted these distances to cover class variables for

each species observation and background point for

analysis. The 16-day composite MODIS data

(MOD13A1 V6 map at 500-meter cell size; http://

earthexplorer.usgs.gov) was used to calculate the

mean normalized difference vegetation index (NDVI)

values of the year 2019. Due to the importance of

water resources for wildlife (Almasieh et al.

2019a, 2019b), distance from rivers was also included.

Human footprint (to provide a map of cumulative

human pressure on the environment), as an indicator of

population density, human access and infrastructure

(Sanderson et al. 2002) was also used. Although

human footprint includes roads, due to the important

adverse effects of roads on cats (Mohammadi et al.

2018; Khosravi et al. 2017), distance to roads

(Department of Environment, 2019) was also consid-

ered separately.

We used two methods to reduce multicollinearity

among variables: (1) the Maxent Variable Selection

package (Jueterbock 2015) in R (R Core Team 2018)

was used to exclude variables by setting a contribution

threshold of 1%, regularization multiplier of 1 to 5

with increments of 0.5 and inter-correlation of 0.7.

Variables with the highest area under the curve (AUC)

of receiver operating characteristic (ROC) and the

lowest Akaike Information Criterion (AIC) were

chosen (Table S1) and (2) the Variance Inflation

Factor (VIF) of the dataset was checked using

r-package usdm (Naimi et al. 2014) to exclude

variables (selected in step 1) with VIF[3 (threshold

suggested by Zuur et al. 2010).

We used an ensemble modeling approach to predict

habitat suitability for each study species. Our ensem-

ble models were created by weight averaging seven

different models using the biomod2 R package

(Thuiller et al. 2014). These models included three

regression-based models (GLM, GAM and MARS)

and four machine-learning models (MaxEnt, RF,

GBM and ANN).

Model performance comparison

We evaluated and compared the performances of

individual habitat suitability models and the ensemble

model for each species using AUC and True Skill

Statistic (TSS). We considered a model with AUC[
0.9 as excellent, 0.8–0.9 as good, 0.7–0.8 as moderate

and 0.6–0.7 as poor. We considered a model with TSS

[ 0.75 as excellent, 0.4–0.75 as good and\ 0.4 as

poor (Eskildsen et al. 2013). Variable contributions to

each model of each cat species were calculated in

Biomod2 (Thuiller et al. 2014). In addition, response

curves of presence points to the most significant

variables in each model were produced and interpreted

for each cat species.

Resistance surface for connectivity analysis

To estimate landscape resistance, we converted the

habitat suitability maps (ensemble model) to resis-

tance maps using a negative exponential function

(Wan et al. 2019) (Eq. 1):

R ¼ 1000ð� 1�HSÞ; ð1Þ

where R represents the cost resistance value assigned

to each pixel and HS represents the predicted habitat

suitability derived from the suitability models

described above (Wan et al. 2019). We rescaled the

resistance values to between 1 and 100 by linear

interpolation, such that minimum resistance (Rmin)

was 1 when HS was 1, and maximum resistance

(Rmax) was 100 when HS was 0 (Wan et al. 2019).

Connectivity analyses

We employed the universal corridor network simula-

tor (UNICOR; Landguth et al. 2012) to create two sets

of connectivity predictions including (1) resistant

kernels (Compton et al. 2007) and (2) factorial least-

cost paths (Cushman et al. 2009). The factorial least-

cost path analysis in the UNICOR simulator applies

Dijkstra’s algorithm to resolve the single-source

shortest path issue from every mapped species occur-

rence location on a landscape to every other occur-

rence location (Landguth et al. 2012). The analysis

produces the sum of predicted least-cost paths from

each source point to each destination point. The

resistant kernel algorithm calculates the cumulative

resistance cost-weighted dispersal kernel around each
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source point up to a user-defined dispersal threshold,

providing an incidence function of the rate of organ-

ism movement through every pixel in the landscape as

a function of the density and number of source points,

the dispersal ability of the species, and the resistance

of the landscape (Compton et al. 2007), and produces a

map of the expected rate of movement of each species

through each pixel in the landscape (Cushman et al.

2013).

To account for uncertainties regarding movement

behavior of these species, we used three distance

thresholds for Pallas’s cat in the resistant kernel

analyses: 20,000, 40,000, and 60,000 cost units, which

represent movement abilities of 20, 40, and 60 km,

respectively, through optimum low resistance habitat

(Ross et al. 2012). For Eurasian lynx, we used

dispersal threshold of 50, 100 and 150 km. For Persian

leopard, we used thresholds of 60, 90 and 120 km.

These dispersal distances are comparable to dispersal

distances from previous research, (e.g. Farhadinia

et al. (2018) reported maximum movement distances

were 82 km for Persian leopards and Samelius et al.

(2012) reported 148 km for Eurasian lynx). For

Pallas’s cat 52 km maximum movement distance

was reported in Mongolia (S. Ross Personal

Communication).

We calculated the factorial least-cost path network

without a dispersal threshold (Cushman et al. 2017) to

provide a broad-scale assessment of the regional

pattern of potential linkage and to map potential long-

distance corridors. The buffered least-cost paths were

then combined through summation (Cushman et al.

2009) to produce maps of connectivity among all pairs

of presence points.

We used the connectivity maps to identify core

areas for each species. We defined core habitat patches

as contiguous patches with resistant kernel values[
10% of the highest recorded for the species (as in

Cushman et al. 2013; Ashrafzadeh et al. 2020). We

ranked these key patches based on their strength (sum

of kernel values) and size (e.g. Cushman et al. 2018).

The final ranking value for the core areas prioritization

represented the averaged values of these sub-rankings.

To evaluate the effectiveness of the current conserva-

tion network in providing connectivity for these

species in Iran, we quantified the extent and percent-

age of protected areas and corridors for each species

that were within the current conservation network.

Conservation prioritization of core habitats

of three montane felids

We prioritized core habitat patches for three mountain

dwelling felids based on the probability of connectiv-

ity (dPC) (Saura and Pascual-Hortal 2007) for all

identified core habitats across the dispersal distance

scenarios (Persian leopard: i.e. 60, 90 and 120 km;

Eurasian lynx: 50, 100 and 150 km; Pallas’s cat: 20,

40 and 60 km) in Conefor 2.6 (Avon and Bergès

2016). dPC takes into account habitat amount and

habitat reachability, and the probability of dispersal

between patches, and can be decomposed into dPCflux

(dPCf), dPCconnector (dPCc) and dPCintra (dPCi)

(Saura and Torné 2009; Ahmadi et al. 2020). dPCintra

measures intra patch connectivity, while flux fraction

of a specific node (dPCflux) reflects both patch

attributes (e.g., area of suitable habitats) and its

position within the landscape, and connector fraction

(dPCconnector) depends only on the topological

position of a patch in the landscape (Mateo Sanchez

et al. 2014). Connector fraction quantifies the impor-

tance of the node as a stepping-stone for dispersal, i.e.

facilitating dispersal between distant nodes (Ahmadi

et al. 2020). We used a distance-probability value of

0.5 and 0.05 for minimum and maximum dispersal

distances, respectively, as recommended by Saura and

Torné 2009.

Spatial pattern and configuration analysis

To evaluate the differences in the spatial pattern and

configuration of habitat, we calculated a suite of

fragmentation metrics with FRAGSTATS (McGarigal

and Cushman 2002). To conduct the FRAGSTATS

analysis, we first converted the UNICOR resistant

kernel outputs into patches by applying a cutoff value

(e.g., Wasserman et al. 2012). For each species, any

values above 25th percentile of the highest dispersal

scenario were reclassified as 1, representing habitat

patches of high connectivity. Everything else was

reclassified as 0. Then, we calculated four class level

metrics using FRAGSTATS v4.2.1 (McGarigal and

Cushman 2002) including: (1) the percentage of the

landscape (PLAND), which quantifies the habitat

patches of high connectivity as a percentage of the

study area; (2) area-weighted radius of gyration

(GYRATE_AM) or correlation length, which provides

a measurement of the extensiveness of habitat patches
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of high connectivity; (3) largest patch index (LPI),

which represents the percentage of the landscape

comprised by the largest habitat patch of high

connectivity; (4) number of isolated patches (NP),

which provides a measure of the degree of fragmen-

tation. These metrics have been used frequently in past

connectivity research (e.g. Wasserman et al. 2012;

Cushman et al. 2016; Macdonald et al. 2019;

Moqanaki and Cushman 2016; Khosravi et al. 2017).

We calculated these metrics for UNICOR resistant

kernel outputs from all habitat suitability models (i.e.,

Ensemble, GLM, GAM, MARS, RF, MaxEnt, GBM

and ANN) for each species.

Results

Model evaluation

Based on the maximum of AUC and the minimum of

AIC in MaxentVariableSelection, 8, 9 and 9 variables

were chosen for habitat modeling of the Persian

leopard, Eurasian lynx and Pallas’s cat, respectively

(SupplementaryMaterials, Table S1). As VIF for these

variables were\3, all of these variables were included

in habitat modeling (Table S2). AUC and TSS for all

models were[0.8 and[0.7, respectively, indicating

strong performance of all models (Table 1).

Overall, the ensemble learning model outcompeted

all single-method models in terms of AUC and had the

highest TSS for the Eurasian lynx and Pallas’s cat

(Table 1). The ensemble learning model ranked 4th

(behind MaxEnt, MARS, and GBM) for the Persian

leopard. Among the single-method models, MARS,

GBM and RF had the highest AUC for the Persian

leopard. For the Eurasian lynx, ANN, MaxEnt and RF

had the highest AUC. For the Pallas’s cat, RF, MaxEnt

and GBM had the highest AUC (Table 1). MaxEnt,

MARS and GBM had the highest TSS for the Persian

leopard. For the Eurasian lynx, MARS, GLM and

MaxEnt, had the highest TSS. Finally, for the Pallas’s

cat, RF, GLM and, MARS had the highest TSS.

Environmental variables

We found topographical ruggedness highly correlated

([0.8) with other variables thus we did not incorpo-

rate it in our models. Bio1 (Mean annual temperature),

vegetation greenness (NDVI), and slope were among

the most important variables based on variable con-

tribution for all three species. Slope, Bio1, NDVI and

distance from forests were the most important vari-

ables predicting occurrence of Persian leopard. Bio1,

Bio12 (annual precipitation), NDVI and slope were

the most important variables for the Eurasian lynx.

Bio1, slope, Bio12 and NDVI were the most important

variables for the Pallas’s cat (Table 2).

Persian leopard showed positive association with

increasing slope (Fig. 2). In addition, it showed a

decrease in occurrence with increasing temperatures,

with rapid decline in occurrence above a mean annual

temperature of 10–15 �C (Fig. 2). In contrast, its

occurrence increased with increasing NDVI. Eurasian

lynx had a strong non-linear relationship with mean

annual temperature, with dramatic decline in suitabil-

ity when mean annual temperature is above 10–15 �C
(Fig. 2). In addition, lynx seemed to show a unimodal

relationship with mean annual precipitation, with

maximum occurrence rate between 200 and 400 mm

(Fig. 2). Like leopard, lynx showed positive associa-

tions with NDVI and slope, with particularly strong

response to increasing NDVI. Pallas’s cat was also

related to mean annual temperature and precipitation.

Like the other species it declined in occurrence rate at

Table 1 AUC and TSS for

all models used for habitat

modeling of the Persian

leopard, Eurasian lynx and

Pallas’s cat in Iran (Bold

numbers are the highest

amounts among different

models for each species)

GLM GAM MARS MaxEnt RF GBM ANN Ensemble

AUC

Persian leopard 0.898 0.867 0.906 0.875 0.891 0.905 0.889 0.936

Eurasian lynx 0.929 0.833 0.930 0.936 0.935 0.933 0.938 0.978

Pallas’s cat 0.922 0.871 0.920 0.930 0.948 0.927 0.917 0.969

TSS

Persian leopard 0.711 0.701 0.752 0.753 0.721 0.732 0.717 0.727

Eurasian lynx 0.801 0.705 0.802 0.792 0.738 0.781 0.778 0.871

Pallas’s cat 0.747 0.720 0.742 0.722 0.771 0.724 0.721 0.832
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high temperatures, but was less associated with the

coldest conditions, with occurrences remaining high

until 12–17 C. It showed a similar optimal precipita-

tion level as lynx (200-400 mm), and in contrast to the

other species was strongly associated with low NDVI

values (Fig. 2).

We mapped habitat suitability based on the ensem-

ble of seven models for each cat species (Figs. S1, S2

and S3). Ensemble habitat suitability for the Persian

leopard revealed that suitable habitat for this species

concentrated in the Alborz and Zagros Mountains as

well as other mountainous areas in the northern,

western to southern parts of Iran (Fig. 3). Habitat

suitability maps of the Eurasian lynx and Pallas’s cat

had the general same pattern (Fig. 3), but for Eurasian

lynx, there was more suitable habitat in the

Table 2 Variable

contribution (measured by

Biomod by applying

different environmental

variables and occurrence

points) in the habitat

modeling of the Persian

leopard, Eurasian lynx and

Pallas’s cat in Iran

Variable Species

Persian leopard Eurasian lynx Pallas’s cat

Slope (degree) 26.8 9.2 23.5

Bio1 (C�) 20.8 44.5 37.5

Bio12 (MM) 6.2 12.4 11.9

Distance from agriculture lands (Degree) 8.9 2.6 3.4

Distance from forests (Degree) 11.9 3.2 3.1

Distance from rocks (Degree) – 5.1 6.1

NDVI (Range from -1 to ?1) 15.3 11.1 6.8

Distance from rivers (Degree) 5.7 7.3 3.6

Human footprint (Range from 0 to 1) – 4.6 –

Distance from roads (Degree) 4.4 – 4.1

Fig. 2 Response curves of presence points of the most important variables in habitat modeling of the Persian leopard, Eurasian lynx and

Pallas’s cat in Iran. For a better illustration, only models of MARS (blue), RF (black) and GBM (red) were considered
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northwestern and more non-suitable habitat in the

southern, southwestern and southeastern parts of Iran.

In addition, there was more suitable habitat for

Pallas’s cat in the eastern parts of Iran, reflecting its

tolerance for warmer temperatures and less vegetated

ecosystems (Fig. 3).

Core habitat

Our connectivity simulation modeling for Persian

leopard revealed that core habitats and connectivity

areas are extensive, and are concentrated in the

northern, and northeastern (Alborz mountains), west-

ern and central parts of Iran. We identified 145 core

areas (Fig. 4), of which eight are more extensive than

2000 km2. The largest and most important core area

has an area of 48,271 km2 and spans from northeastern

to northwestern Iran (Golestan National Park,

Khoshyeilagh Wildlife Refuge, Central Alborz Pro-

tected Area, Jahannama Protected Area) (Fig. 4 and

Table 3). The second largest and most important core

area, based on size (4265 km2) and strength (sum of

kernel value), occurred in southwestern Iran (Dena

National Park and Tange Bostanak Protected Area).

The average size of predicted core habitat patches for

this species was 783.41 km2, and 26.50% of the

identified core habitats for the Persian leopard are

covered by protected areas.

We identified 40 core areas for the Eurasian lynx.

The largest and most important core area, according to

size (10165.23 km2) and strength, is in the Parvar,

Jahan Nama and Hezar Jarib Protected Areas, Dodan-

geh and Khoshyeylagh Wildlife Refuges (Fig. 4;

Table 3). The second largest and most important

predicted core lynx habitat area has an area of

10204.44 km2 and is located in northern Iran (Alam

Kooh, Alborz and Lar Protected Areas) (Fig. 4;

Table 3). The average extent of predicted core habitat

areas for this species is 896.11 km2. Among the

predicted core habitats of Eurasian lynx, 30.07% are

covered by protected areas.

For Pallas’s cat, we identified 82 core areas. The

largest core habitat based on size (854.53 km2) and

strength in occurred northern Iran (Fig. 4; Table 3).

The second largest core habitat (940.21 km2) occurred

in northeastern Iran ( Binalood Protected Area)

(Fig. 4; Table 3). Among the predicted core habitats

for this species, 35.50% are covered by protected

areas.

Fig. 3 Ensemble models for habitat suitability of the Persian leopard, Eurasian lynx and Pallas’s cat in Iran
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Connectivity network

Our connectivity simulation modeling for Persian

leopard revealed high connectivity areas in the

northern, northeastern, central and southern parts of

Iran. A total of 21.71% of the extent of this corridor

network falls within protected areas (Fig. 5; Table 4).

Most of the identified corridor network for Eurasian

Fig. 4 Persian leopard (A), Eurasian lynx (B) and Pallas’s cat

(C) core areas at dispersal ability 60, 50 and 20 km respectively

and network of Iranian protected areas. Mean values of dPC

used for prioritizing core habitats. Each number represent the

prioritized core areas for each felid species

Table 3 Number of core habitat, the extent and percent of core habitats covered by current conservation networks for three felids in

Iran

Species Dispersal ability

(km)

Number of core

area

Extent of core

habitats

(km2)

Extent of protected

core

habitats (km2)

% of protected

core

habitats

Persian

Leopard

60 145 110180.71 33263.59 30.19

90 85 149064.22 38952.28 26.13

120 53 184440.12 42741.00 23.17

Eurasian Lynx 50 40 39429.24 13825.99 35.06

100 30 57082.40 16751.29 29.34

150 25 72229.08 18660.56 25.83

Pallas’s cat 20 82 14701.10 5697.22 38.75

40 65 22077.15 7777.27 35.22

60 45 28954.57 9425.24 32.55

The median value of habitat suitability for presence points was used as threshold to define the highly suitable habitats
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Lynx occurred in northern, northeastern, northwestern

and western Iran. Of the predicted corridor paths of

Eurasian lynx, 29.94% are covered by protected areas

(Fig. 5; Table 4). Only 23.10% of Pallas’s cat corri-

dors are covered by protected areas (Fig. 5 and

Table 4). Our analysis showed that most predicted

corridor paths for all three species are bisected

multiple times by roads (Fig. 5; Table 4).

Landscape connectivity across different models

and dispersal abilities

For all three species, the percentage of the landscape,

correlation length and largest patch index of connected

habitat were predicted to increase significantly, and

the number of patches was predicted to decrease, with

increasing dispersal ability (Tables 5, 6 and 7).

Among the models, RF predicted the highest number

of isolated patches for the three species, especially for

Eurasian lynx at dispersal ability of 50 km (Table 6).

At all levels of dispersal ability, there was change in

the FRAGSTATS metrics between analysis of ensem-

ble models and other models. At the three dispersal

thresholds and based on different models, 0.3 to 2.4%

of the landscape is occupied by connected habitat

patches for Pallas’s cat. For Eurasian lynx 0.3 to 1.9%

of the landscape is occupied by connected habitat

patches and for Persian leopard 1.2 to 4.1% of the

landscape is occupied by connected habitat patches.

We predicted that the number of isolated patches for

Persian leopard, Eurasian lynx and Pallas’s cat were

1–2, 2–10 and 52–73 respectively (Tables 5, 6 and 7).

Identification of top-ranked core habitats

Persian leopard

Our analysis revealed that with increasing dispersal

distance, there were large changes in the relative

importance of different cores and an overall increase

in connectivity importance across cores. Based on

dPCc, Core 3 was the chief stepping stone among other

cores at dispersal ability 60 km (Fig. 4, Fig. S4,

Table S3). At dispersal ability of 60 km, Core 1 had

the next largest contribution as a stepping stone

(Fig. 4, Fig. S4, Table S3). Over dispersal distances of

Fig. 5 UNICOR corridor pathways for the Persian leopard (A), Eurasian lynx (B) and Pallas’s cat (C) in Iran
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60 to 120 km, there was a decreasing trend in

importance of core habitats (Core 5 to 8) as stepping

stones in the connectivity network of the Persian

leopard (Table S3). Based on the dPC index, the cores

1 and 2 were the most important for maintaining

habitat connectivity at dispersal distance 60 to 120 km

(Fig. 4, Table S3). Also, the cores 4–8 were the most

important cores at dispersal distance 60 km (Fig. 4,

Fig. S4, Table S3). Core 1 was the most important for

the dPCi index at 90 and 120 km dispersal distance

(Table S3). Based on dPCf, core 1 was the most

important core but at 90 and 120 km core 2 was the

next important (Table S3). Core 3 was the most

important core at 60 km. At all distances, from core 4

to 8 there was a remarkable decrease in dPCf value

(Table S3).

Eurasian lynx

Based on dPCc, Core 3 was the chief stepping-stone

among other cores at dispersal ability 50 km for

Eurasian lynx (Fig. 4, Fig. S4, Table S4). At dispersal

ability of 50 and 100 km, core 1 had the next largest

contribution as a stepping stone (Table S4, Fig. S4,

Fig. 4). Over dispersal distances of 50 to 120 km,

there was a decreasing trend in importance of core

habitats (Core 5 to 16) as stepping stones in the

connectivity network (Fig. 4, Table S4). Based on the

dPC index, the cores 1 and 2 were the most important

for maintaining habitat connectivity at dispersal

distance 50 to 150 km. After core 5, dPC index was

reduced markedly in the remaining cores (Fig. 4,

Table S4). Core 1 was the most important for the dPCi

index at 150 km dispersal distance (Table S4). Also,

Table 4 The extent and percent of corridors covered by current conservation networks for three felids in Iran

Species Extent of corridors (km2) Extent of protected

corridors (km2)

% of protected

corridors

Length of paved road cross

the corridor path (km)

Persian leopard 273197.67 59321.55 21.71 10773.72

Eurasian lynx 182485.59 24696.60 29.94 6733.6

Pallas’s cat 125442.05 28977.31 23.10 14219.58

The median value of habitat suitability for presence points was used as threshold to define the highly suitable habitats

Table 5 FRAGSTATS results for Persian leopard

Metrics Dispersal ability (km) GLM GAM MARS MaxEnt RF GBM ANN Ensemble

NP 60 8 21 21 16 30 13 16 2

90 6 13 12 11 15 10 8 2

120 5 9 9 7 9 5 5 1

LPI 60 2.697 2.392 2.392 2.223 1.208 2.741 2.776 2.665

90 3.497 3.307 3.307 2.848 1.662 3.595 3.648 3.402

120 4.084 3.719 3.719 3.408 2.222 4.198 4.206 3.916

PLAND 60 2.7909 2.662 2.662 2.362 1.222 2.822 2.865 2.665

90 3.606 3.387 3.387 2.848 1.671 3.683 3.750 3.402

120 4.085 3.754 3.754 3.409 2.267 4.199 4.207 3.916

CL 60 27290.84 8854.87 8854.87 9838.49 4793.09 12973.20 10616.67 79904.74

90 35186.81 13404.98 13404.98 20310.38 8842.59 17816.39 30020.90 84146.53

120 21639.43 19444.04 19444.04 13776.44 15449.13 34443.11 25125.35 162542.187

The metrics include: NP number of individual core patches, LPI largest patch index, PLAND percentage of landscape in connected

habitat, CL correlation length of core habitats. For Persian leopard in three levels of dispersal ability (60, 90, 120 km). The core

habitats were defined as contiguous units with resistant kernel values[25% of the highest resistance kernel for the species
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based on dPCf, core 1 and 2 was the most important

core at 150 and 100 km respectively (Fig. 4, Fig. S4,

Table S4). Core 3 to 5 was the most important core at

50 km. At all distances, from core 6 to 16 there was a

remarkable decrease in dPCf value (Fig. 4, Fig. S4,

Table S4).

Pallas’s cat

For Pallas’s cat, the dPCc showed that Core 1 and 3

were the chief stepping stones among other cores at

dispersal ability 60 km (Fig. 4, Fig. S4, Table S5). Our

result showed that the dPC connector of core 1 was

higher for this species at all distances, indicating a

Table 6 FRAGSTATS results for Eurasian lynx

Metrics Dispersal ability (km) GLM GAM MARS MaxEnt RF GBM ANN Ensemble

NP 50 22 19 21 16 74 27 29 10

100 5 14 12 8 16 13 16 3

150 5 10 5 8 11 9 14 2

LPI 50 0.672 0.538 0.655 0.390 0.221 0.390 0.405 0.577

100 1.064 0.859 0.983 0.738 0.288 0.857 0.858 0.908

150 1.248 1.114 1.158 0.941 0.348 1.072 1.089 1.858

PLAND 50 1.267 0.956 1.234 1.00 0.385 0.926 1.052 1.166

100 1.385 1.098 1.292 1.00 0.483 1.209 1.322 1.232

150 1.645 1.641 1.545 1.371 0.624 1.716 1.952 1.904

CL 50 7745.05 7613.06 8029.32 9907.52 2134.03 5762.98 5800.91 16214.34

100 23958.34 20935.93 9968.02 13713.71 8335.20 10103.81 10186.76 38411.75

150 23993.04 11804.11 22901.18 14989.41 6763.42 17644.18 11122.30 57294.51

The metrics include: NP number of individual core patches, LPI largest patch index, PLAND percentage of landscape in connected

habitat, CL correlation length of core habitats. For Eurasian lynx in three levels of dispersal ability (50, 100, 150 km). The core

habitats were defined as contiguous units with resistant kernel values[25% of the highest resistance kernel for the species

Table 7 FRAGSTATS results for Pallas’s cat

Metrics Dispersal ability (km) GLM GAM MARS MaxEnt RF GBM ANN Ensemble

NP 20 96 88 94 93 105 86 96 73

40 86 84 84 85 101 85 81 62

60 76 81 81 74 101 76 76 52

LPI 20 0.094 0.084 0.093 0.042 0.021 0.089 0.099 0.093

40 0.184 0.161 0.185 0.150 0.031 0.185 0.187 0.186

60 0.337 0.302 0.337 0.277 0.042 0.335 0.337 0.543

PLAND 20 0.982 0.783 0.932 0.706 0.346 0.853 0.958 0.927

40 1.400 1.099 0.131 0.937 0.450 1.207 1.362 1.360

60 2.046 1.536 1.916 1.347 0.595 1.738 1.989 1.933

CL 20 4429.86 4327.19 4403.67 3796.88 2513.62 4555.69 4351.01 5459.39

40 5568.19 4290.06 5468.10 4443.19 2877.47 5176.53 5727.72 7297.83

60 7000.01 5726.86 5995.87 5684.04 3245.54 6387.98 5713.12 9444.52

The metrics include: NP number of individual core patches, LPI largest patch index, PLAND percentage of landscape in connected

habitat, CL correlation length of core habitats. For Pallas’s cat in three levels of dispersal ability (20, 40, 60 km). The core habitats

were defined as contiguous units with resistant kernel values[25% of the highest resistance kernel for the species
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more important role of core 1 as stepping stones in

facilitating movement of this species. Over distances

of 20 and 60 km, there was a decreasing trend in

importance of core habitats (especially core 5 to 18) as

stepping stones in the connectivity network. Based on

the dPC index, the cores 1 to 7 were the most important

cores for maintaining habitat connectivity at dispersal

distance 20 to 60 km (Fig. 4, Fig. S4, Table S5). In

addition, based on dPCf, core areas 1 and 2 were the

most important at 60 and 20 km respectively (Fig. 4,

Table S5). Core 3 to core 5 were the most important

cores at 40 and 60 km (Fig. 4, Table S5). Core 6 to

core 14 were the most important cores at dispersal

ability 20 km. From core 6 to 16, there was a large

decrease in dPCf values compared to the most

connected cores (Fig. 4, Table S5).

Discussion

Predicting and understanding habitat is a central theme

ecology. Researchers have developed many methods

to model habitat, and ensemble learning is emerging as

a particularly powerful analytical paradigm. Because

ensemble learning is still a relatively new to method to

many ecologists, the application of this method to

study species habitat remains relatively rare. Among

these studies, few have tested the potential improve-

ment in performance that ensemble learning offers

over single modeling methods, and whether and how

these performances might differ among different

species. In this study, we compared the performances

of seven statistical methods, including an ensemble

learning method, for modeling habitat of three sym-

patric mountainous carnivore species in Iran.

Overall, our study demonstrated that ensemble

models typically perform better than any single

modelling method. Garzon et al. (2006) previously

reported that Random Forest was the most accurate

algorithm in comparison with Tree-based Classifica-

tion and Neural Networks. Mi et al. (2017) reported

similar performances of RF and ensemble model for

three bird species in the East of Asia. In contrast,

Shahnaseri et al. (2019) showed that ensemble learn-

ing had the second highest accuracy after RF for

predicting habitat suitability for grey wolf and golden

jackal in central Iran. In this study, we found that

ensemble model was almost always slightly better for

all three carnivore species in Iran. This is consistent

with Shabani et al. (2016), who showed that ensemble

models outcompeted single-method models for eight

species in Australia. Similarly, Araújo and New

(2007) reported ensemble models outperformed single

approach models. Moreover, in previous studies that

had compared ensemble and single modelingmethods,

few had investigated whether there would be differ-

ences between different model performance metrics.

By comparing both AUC and TSS across all our

models, we found that the two metrics were mostly in

agreement, but had some notable differences. This has

potential implications for future studies in terms of

choosing performance metrics for model comparisons.

Factors influencing habitat suitability

Habitat suitability modeling for Persian leopard,

Eurasian lynx and Pallas’s cat revealed that their

primary suitable habitat is concentrated in the Alborz

and Zagros Mountains. Mean annual temperature

(Bio1), NDVI and slope were the most critical

variables determining habitat quality for all three of

our studied species. Our results clearly show that all

three species are influenced and limited by climate and

topography, with all three associated with relatively

cooler mountain conditions, with lynx most associated

with cool temperatures, followed by leopard, and with

Pallas’s cat showing the greatest tolerance for warmer

conditions. The results also show strong association of

lynx and leopard with areas of higher vegetation

density, while Pallas’s cat is associated with areas with

relatively sparser and more open vegetation. Distance

from forests for the Persian leopard and mean annual

precipitation (BIO12) for the Eurasian lynx and

Pallas’s cat were other vital variables in habitat

modeling. This shows that lynx and Pallas’s cat are

likely more limited by climate (both temperature and

precipitation), while leopard, as seen elsewhere (Stein

et al. 2016; Rather et al. 2020) has a broader habitat

niche, but relatively high vulnerability to human-

wildlife conflict (Rostro-Garcia et al. 2016).

Relevant to our study, Farhadinia et al. (2015)

reported that mean annual temperature, vegetation

cover, and forest-shrub density were the most impor-

tant variables for predicting occurrence of the Persian

leopard in the Caucasus region (northwest) of Iran.

Ashrafzadeh et al. (2019) further identified prey

presence, slope and distance to villages as the major

drivers of Persian leopard habitat suitability in western
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Iran. Also, NDVI, distance from agricultural areas,

and aspect are other important variables in Persian

leopard habitat suitability (Erfanian et al. 2013).

Barashkova et al. (2017) suggested that vertical

migrations could be important for Pallas’s cat to avoid

deep snowy regions in winter. Additionally, a com-

bined method of expert and habitat models revealed

the significance of land cover, open forests, and aspect

for Eurasian lynx (Doswald et al. 2007). Our results

generalize and refine these relationships across the full

extent of Iran, showing that leopard occurrence is

driven both by vegetation, temperature and forest

proximity (as a proxy for security from human

persecution; Kittle et al. 2018).

Our study identifies potential critical thresholds in

temperature that seem to control the distribution of

these three species across Iran, with lynx in particular

highly associated with the coldest conditions, and

therefore likely most vulnerable to climate driven

changes in habitat suitability (Mahdavi et al. 2020). A

similar result was seen for American marten (Martes

americana) by Wasserman et al. (2012). This suggests

it may be important to project future climate change

scenarios on the potential habitat and connectivity of

these species (e.g., Wasserman et al. 2012; Shirk et al.

2018; Dar et al. 2021).

Core areas, connectivity and protected areas

Our study identified northern and northeastern Iran as

a critical core habitat and connectivity areas for all the

three species. This is consistent with Ashrafzadeh

et al. (2020) in terms of predicted core and connec-

tivity areas for these three species. Our analysis of the

relative importance of core habitats as network

stepping-stones, in particular, provides a quantitative

ranking of conservation importance of different land

units which can guide nation-wide conservation

prioritization and planning. Our result revealed that

northern parts of Iran (i.e., Alborz mountains and

Hyrcanian forest) were the key areas for prioritizing

conservation efforts for the three felids in Iran.

Systematic conservation planning is the science of

developing optimal management scenarios to enhance

the preservation of biodiversity (Scott et al. 1993,

Margules and Pressey, 2000, Groves et al. 2002), thus

minimizing the biases in protected area selection

(Watson et al. 2011). While, establishing protected

areas is a critical component of conservation strategies

(Chape et al. 2005, Naughton-Treves et al. 2005), for

protected areas to be effective in promoting conser-

vation objectives they need to be carefully and

explicitly selected to provide sufficient conditions,

extent and connectivity to sustain the biodiversity that

depend on them (Nicholson and Possingham 2006,

Cushman et al. 2018). In that context, it is critical to

also address management problems and conflicts

along the edges of protected areas, along the corridors

that connect them and in the multiple-use matrix in

which they are embedded (Cushman et al. 2018,

Hansen and DeFries 2007). Carnivores are suit-

able proxies for regional conservation planning, and

therefore, identifying their core habitats and connec-

tivity can serve as an umbrella for other sympatric

species (Carrol et al. 2001; Macdonald et al. 2020).

One approach for prioritizing conservation actions

is based on analyzing core areas and corridors for a

selection of focal species, which has recently emerged

as a commonly applied approach for broad-scale

conservation prioritization. For example, Cushman

et al. (2013) evaluated the sufficiency of several

categories of protected areas in protecting connectiv-

ity for 105 focal species with a broad range of

ecological relationships and dispersal abilities. They

found that protected lands in the region are primarily

higher elevation forest and mountain habitats, which

leave species associated with lower elevations and

non-forested habitats more unprotected. A focal

species approach was also employed by Cushman

et al. (2016, 2018), using analysis of habitat core and

connectivity areas for African lions to evaluate

alternative landscape change scenarios (Cushman

et al., 2016) and prioritize areas of the current

landscape for designation as protected areas or

biological corridors. Those studies showed unequiv-

ocally that strictly protected areas are essential as the

foundation of conservation strategies for lions, but are

insufficient in their current network, requiring both

expansion of existing protected areas and strategic

protection of critical linkage corridors among them.

Similarly, Kaszta et al. (2019, 2020a, b), using the

clouded leopard as a focal species for conservation

planning, found that less than 25% of clouded leopard

core habitat was protected across its range, and almost

none of the major predicted corridors across the

population received protection (Kaszta et al. 2020b).

Furthermore, Swanepoel et al. (2013) revealed that

most suitable habitats of leopard are located outside of
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Protected Areas. By evaluating a range of alternative

future scenarios, they demonstrated that likely future

land use changes will have large negative impacts on

the species, and were able to quantify the particular

impacts of particular proposed development projects

and propose alternative plans to minimize those

impacts.

In our study, we also mapped and prioritized core

areas and corridors for multiple focal species.We found

that several regions provide core areas and corridors for

several of our focal species, which is encouraging and

suggests that, unlike Cushman et al. (2013), for several

large carnivores in Iran it may be efficient and effective

to develop landscape-based, multiple-species conser-

vation strategies. However, unlike similar studies

conducted recently in Iran (Khosravi et al. 2017,

Shahnaseri et al. 2019), our study revealed relatively

little overlap of corridors and core areas with Protected

Areas (like Kaszta et al. 2020b). Additionally, Ashraf-

zadeh et al. (2020) showed a lesser extent of core

overlap with protected areas of Persian leopard,

Eurasian lynx and Pallas’s cat, as well as a poor

corridor protection. The extent of the study and studied

species were different between our study and these past

studies, which may explain their different results. The

emergence of a collection of landscape core and

connectivity assessments and prioritizations in Iran

suggests future work should attempt to synthesize the

results of these studies to find the common and universal

implications. In addition, some of the differences in

predictions appear to be fundamental, suggesting

additional work, in particular using more robust meth-

ods to assess connectivity, such as landscape genetics

(e.g., Wasserman et al. 2010) and movement modeling

(e.g., Elliot et al. 2014) should be conducted onmultiple

focal species to clarify relationships between occur-

rence, dispersal, gene flow and landscape structure.

Core area prioritization

The relative importance of predicted habitat core areas

changed with simulated dispersal ability. Our results

showed that generally the most important patches for

three mountainous felids were those occupying the

largest extents (e.g. Core 1) (Fig. 4). For Persian

leopard, Eurasian lynx and Pallas’s cat core 1, core

1–2 and core 1–6 were the most important core

habitats respectively. Our result was consistent with

Shahnaseri et al. (2019) and Mohammadi et al.

(2021a). For the majority of core patches, we found

remarkable change in rank of a given core habitat in

connectivity importance when changing the dispersal

distance scenario, which suggests very strong influ-

ence of scale and dispersal ability on conservation

prioritization.

Implications for conservation

Our analysis identified and quantified the strength and

importance of the corridor network connecting the

identified core areas across Iran for the three study

species. We found that all three study species express

strong habitat relationships and that climate and

vegetation cover variables are highly important to all

of them. We found that the most important core areas

were concentrated in the main mountain areas of

northern and western Iran, and that these three species

have highly overlapping core habitats and somewhat

coincident corridor networks. This enables efficient

conservation of all three species through integrated

multi-species conservation planning. However, the

core areas and corridors of all three species are poorly

protected by existing protected areas. Our results,

therefore, provide critical guidance to expanding

existing protected areas and establishing new pro-

tected areas in locations that will have the maximum

benefit for conserving core habitat and connectivity

for multiple species. Importantly, our results suggest

that most identified corridor paths are bisected mul-

tiple times by roads, and therefore indicate areas that

should be prioritized for mitigating road-mortality risk

and increasing road permeability (such as overpass

structure placement). Most protected areas in Iran are

surrounded by roads, and road mortalities are a serious

threat for carnivores (Moqanaki and Cushman 2016;

Mohammadi and Kaboli 2016; Mohammadi et al.

2018). For instance, Parchizadeh and Adibi (2019)

showed that road kills are one of the most important

human-caused mortality factors of Persian leopard in

Iran. Ongoing development in Iran is rapidly altering

habitats across the country, leading to accelerating

habitat loss and fragmentation. For example, The Belt

and Road initiative includes several major ongoing

and planned projects in Iran, including pipeline and

transportation networks, which likely would lead to

habitat loss, fragmentation, increased human-wildlife

conflict and potentially promote illegal carnivore trade

(Farhadinia et al. 2019b; Kaszta et al. 2020b).
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Conclusions

In this study, we combined ensemble habitat suitabil-

ity modeling, landscape pattern analysis and connec-

tivity simulation for a large carnivore and two meso-

carnivores across their ranges in Iran. We found all

three species to be associated with temperature,

topography and vegetation variables, with concentra-

tion of suitable habitat, core areas and corridors along

the major mountain ranges, particularly in northern

and western Iran. We computed the intersection of

these with protected areas and found that most habitat

core and corridors are not currently protected. We

advocate that additional protected areas should be

designated to optimally protect the multispecies

network of core and corridors we identified. We

suggest that the Iranian Department of Environment

should consider the findings of this and similar studies

that use empirical data to predict habitat suitability and

connectivity of multiple focal species, especially when

planning and designing new Protected Areas and

reviewing development plans (e.g., Kaszta et al.

2019, 2020b). Such spatially explicit prioritization is

critical to balance the tradeoffs between development

and conservation and ensure the viability of sensitive

wildlife species.
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