
Spatial risk patches of the Indian 
crested porcupine crop damage in 
southeastern Iran
Kamran Almasieh1 & Alireza Mohammadi2

Human-wildlife conflict (HWC) represent a significant global issue, leading to economic losses for 
humans due to the destruction of agricultural products and livestock. This study was conducted 
in southeastern Iran with two primary objectives: to identify the major environmental variables 
influencing spatial risk modeling and to pinpoint spatial risk patches and hotspots of agricultural 
damage caused by the Indian crested porcupine (ICP) in this region. An ensemble modeling technique 
was used to evaluate the spatial risk of agricultural damage caused by the ICP, drawing on 111 
independent conflict records and nine environmental factors. The findings indicated that the distance 
to villages, orchard density, cropland density, and Normalized Difference Vegetation Index emerged 
as the most significant variables in modeling the spatial risk of crop damage from the ICP in the study 
region. Nine spatial risk patches, comprising approximately 8% of the study area, were identified for 
crop damage attributed to the ICP. The three largest spatial risk patches, located in the west of the 
study area, accounted for 80% of all predicted crop damage patches caused by the ICP. Additionally, 
hotspots of agricultural damage were clustered in the western part of the study area. Conservation 
areas covered about 8% of the predicted spatial risk patches and 2.4% of the hotspots of agricultural 
damage, respectively. Urgent attention is needed to reduce human-ICP conflicts in the identified risk 
patches. We strongly recommend implementing fencing around cultivated lands and individual tree 
trunks, as well as enhancing local knowledge and insurance for agricultural products, to mitigate 
human-ICP conflicts in the study area.
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The ever-increasing expansion of human activities and the encroachment of human infrastructure on natural 
landscapes have led to a rise in human-wildlife conflicts (HWC)1,2. HWC is a global issue that results in 
significant economic damage to humans due to the destruction of agricultural products and losses in livestock3–5. 
In addition, residents employ various methods to prevent damage or retaliation against local species, such as 
trapping and shooting, to eliminate these species6. The escalating conflict undermines local cooperation for 
species conservation, jeopardizing the long-term survival of wildlife due to retaliatory killings7,8. Previous 
studies on HWC have primarily concentrated on large carnivores9–12. However, mammals that are considered 
pests of agricultural products can inflict significant damage to these resources5,13.

The Indian crested porcupine (Hystrix indica Kerr, 1792), hereafter referred to as ICP, is a large Asiatic rodent 
recognized for its long quills. This species is found in 19 countries, ranging from the eastern Mediterranean 
to Southwest and Central Asia (Supplementary Information: Fig. S1). Due to its wide distribution, the ICP is 
categorized as Least Concern (LC) by the IUCN Red List14. However, the ICP faces threats from overharvesting 
in Southwest Asia15. Consequently, this species is considered vulnerable in Jordan, near threatened in Turkey, 
and threatened in Iraq15–17. The ICP is a strictly nocturnal and generalist herbivore that spends the daytime in 
dens. It feeds on a variety of natural geophytes and hemi-cryptophyte species, as well as grains, fruits, and the 
bark of trees7. The ICP digs into the ground to consume plant roots, and the burrows created by this species are 
clearly visible18. This species have been identified as an apex ecosystem engineers by providing crucial ecological 
niche for various other co-occur animals19. However, The ICP has been identified as a species in conflict with 
humans in various regions of Asia7. In western Asia, the ICP is threatened and is considered an agricultural pest 
due to its tendency to raid crops and debark the trees of orchards at ground level15. For example, in Pakistan, 
the ICP causing widespread crop damage and prompting various human responses. The most affected crop by 
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the ICP is maize followed by other crops such as potatoes, tomatoes, and various greens20,21. Economic losses 
are substantial, with many farmers reporting annual losses ranging from $101 to $300 due to ICP damage21. The 
damage poses a threat to food security and subsistence farming, particularly in regions where agriculture is the 
primary livelihood source. While specific cultural disruptions are not extensively documented, the reliance on 
agriculture for sustenance suggests that crop losses could indirectly affect cultural practices tied to farming cycles 
and community gatherings around harvests. Farmers use a mix of strategies to mitigate porcupine damage such 
as lethal control and hunting. ICPs are also hunted for medicinal purposes and as a food source22. While hunting 
occurs, there is limited research on its long-term effects on ICP populations. Relocation is rarely mentioned as a 
viable option, indicating a preference for immediate lethal control23. The ICP is the largest rodent in Iran, with 
a vast distribution24. The Persian leopard (Panthera pardus tulliana) is the natural predator of the ICP. In areas 
where the leopard population is locally extinct or significantly reduced, the ICP has become a pest, damaging 
agricultural crops, trees in orchards, and, in some cases, natural woodlands25. In certain regions of Iran, they 
are hunted and consumed for their meat for medical reasons, such as the treatment of respiratory diseases like 
asthma, which has contributed to a decline in the species’ population18.

It is essential to identify areas with a high risk of large rodents damaging crops in order to protect these 
species26. Spatial risk models used to predict areas at high risk for crop damage caused by large rodents, analyze 
the relationship between environmental variables and agricultural damage to identify landscapes associated with 
a heightened risk of damage27. These models can effectively detect areas with a high probability of HWC due to 
the non-random distribution patterns of such conflicts28. Spatial risk patches, defined in this paper as areas with 
a high likelihood of conflict due to large rodents, should be prioritized for mitigating HWC29. Recognizing key 
factors in spatial risk modeling is vital for safeguarding species in regions susceptible to significant crop damage 
caused by large rodents4. Furthermore, areas with a higher frequency of damage reports, and thus an increased 
likelihood of conflict, have been identified as hotspots30,31.

Locals in rural areas who rely on agricultural livelihoods typically have low incomes compared to their 
urban counterparts. Consequently, damage to agricultural products can lead to significant social and economic 
repercussions for these communities32. Conversely, minimizing human-ICP conflict is crucial for the survival of 
species in human-occupied landscapes33. Crop raiding by ICPs is particularly prevalent in the arid and semi-arid 
regions of southeastern Iran. As a result, this species is often identified as a source of conflict for local farmers. 
Therefore, this study was conducted in southeastern Iran with two primary objectives: (1) to identify the key 
environmental variables involved in spatial risk modeling and (2) to pinpoint spatial risk patches and hotspots 
of agricultural damage caused by the ICP within the region. Our findings offer insights into how human-ICP 
conflict can be mitigated by illustrating the environmental preferences of this species in southeastern Iran, where 
crop-raiding incidents are most prevalent.

Materials and methods
Study area
The study area encompasses three provinces: Sistan and Baluchistan, Hormozgan, and Kerman, located in the 
southeast of Iran (Fig. 1). This region covers approximately 433,000 km², accounting for 26.3% of Iran’s total 
area. Two distinct climatic and topographic zones are present within the study area. The first zone includes 
Sistan and Baluchistan, Hormozgan, and southern Kerman, characterized by vast arid plains, hot summers, mild 
winters, and annual precipitation ranging from 100 to 150 mm. The primary natural tree species in the sparse 
woodlands of this area include Tamarix spp., Nannorrhops ritchiana, and Prosopis cineraria34. Additionally, 
Phoenix dactylifera is the predominant tree found in the orchards of these provinces. The impact of damage to 
these trees, as observed in some cases by the ICP, exacerbates the human-ICP conflict in these regions (Fig. S2). 
North of Kerman lies a distinct mountainous region characterized by milder summers, colder winters, and an 
annual precipitation of 350 mm. The primary native tree species in this area include Pistacia khinjuk, P. atlantica, 
and Amygdalus lycioides34. Locals utilize the fruit and gum from these trees, particularly P. atlantica; however, 
the local economy suffers due to the drying of these trees caused by the bark stripping inflicted by the ICP. 
Additionally, various tree species, such as Juglans spp. and Ficus carica, are found in the orchards of this region, 
which are also adversely affected by ICP as it debarks the trees at ground level. Furthermore, ICP has caused 
significant damage to agricultural crops, especially Medicago sativa and Vicia faba. Locals have also reported 
damage to irrigation tubes. Approximately 12.4% of the study area is designated as conservation areas (CAs) 
(Fig. 1).

Conflict records and environmental variables
In the study area, rangers and experts from the Department of Environment (DoE) provincial offices recorded 
a total of 124 instances of agricultural damage linked to the ICP (conflict records) across the three provinces 
of Sistan and Baluchistan, Hormozgan, and Kerman between the years 2015 and 2023. These records are 
considered reliable, as rangers and experts conducted site visits following each report of agricultural damage. 
During these visits, they identified the responsible species by examining the effects of the damage and looking 
for signs such as quills, footprints, and scat at the damage site, as well as interviewing witnesses. To minimize 
spatial-autocorrelation, based on the maximum home range of the ICP, which is 8 km²22, a 2 km radius was 
applied around each conflict record for spatial filtering. This was done using the Spatially Rarefy Occurrence 
Data tool within the SDMtoolbox35.This radius is twice the amount considered for reducing the density of the 
occurrence points of the crested porcupine (Hystrix cristata) in Italy5. Thirteen conflict records were excluded, 
resulting in 111 independent records used for spatial risk modeling (Fig. 1).

All pertinent environmental variables (n = 30), encompassing human-related factors, land cover, water 
resources, protection measures, topography, and climate conditions, were primarily taken into account to model 
the spatial risk areas of agricultural damage resulting from ICP (see Table 1). Human-wildlife conflict is influenced 
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by population density, as well as the closeness to human settlements and other man-made structures28. Therefore, 
distances to villages and roads were established as human-related variables using the Euclidean distance tool. 
We employed Inverse Distance Weighting (IDW) to create a variable representing human population density 
by interpolating the population density of villages28. The human footprint, as discussed by Venter et al.36, is 
another variable associated with human activity that serves as an indicator of human access, infrastructure, and 
population density with a base resolution of 1 km37. Due to agricultural damages by the ICP15, the orchards 
(woody production) density and croplands (cultivated fields with herbaceous production) density were derived 
from the land cover map of Iran. A circular moving window with a five-kilometer radius was employed to 
generate density maps for these land cover types38. The Normalized Difference Vegetation Index (NDVI) was 
calculated using 16-day composite MODIS data (MODIS MYD 13 A1 V6 map at a 500-meter resolution;  h t t 
p : / / e a r t h e x p l o r e r . u s g s . g o v     ) , based on the average values for the year 2023. Additionally, the distance to rivers 
was used as the water source for the species. The distance to CAs was considered a protective factor for the 
ICP. Topographic factors are dominant variables to predict distribution of species28. A Digital Elevation Model 
(DEM) was sourced from http://srtm.csi.cgiar.org, featuring a resolution of 250 m. This data originated from the 
90-meter Shuttle Radar Topography Mission (SRTM, http://earthexplorer.usgs.gov). The DEM was utilized to 
generate a slope variable. Climate determine the distribution of porcupines39. Therefore, nineteen bioclimatic 
variables were analyzed, comprising eleven temperature variables and eight precipitation variables with a base 
resolution of 1 km40 (http://worldclim.org). All variables were resampled to a resolution of 1 km. In ArcGIS 
version 10.141 ( h t t p s :  / / w w w .  e s r i . c  o m / e n -  u s / a r  c g i s / p  r o d u c t  s / a r c g  i s - p r o / r e s o u r c e s), all the tools necessary for 
creating variables are accessible.

To select the final variables for spatial risk modeling, the R package MaxentVariableSelection42,43 was utilized, 
with an inter-correlation threshold set at 0.7, a regularization multiplier ranging from 1 to 5 in increments of 
0.5, and a contribution threshold of 5%. The variables were chosen based on the lowest Akaike Information 
Criterion (AIC) and the highest Area Under the Curve (AUC) of the Receiver Operating Characteristic (ROC). 
Additionally, to exclude previously selected variables with a Variance Inflation Factor (VIF) of less than 344, the 
VIF of the dataset was assessed using the R package USDM45 (see Table 1).

Fig. 1. Study area with two distinct topographic zones encompassing the three provinces of Sistan and 
Baluchistan, Kerman, and Hormozgan in southeastern Iran, highlighting the locations of agricultural damage 
caused by the Indian crested porcupine. ArcGIS software version 10.1 ( h t t p s :  / / w w w .  e s r i . c  o m / e n -  u s / a r  c g i s / p  r o d 
u c t  s / a r c g  i s - p r o / r e s o u r c e s) was used to generate the figure.
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Spatial risk modeling
Spatial risk modeling of agricultural damage caused by the ICP in the study area was performed using the 
R package Biomod246. Biomod2 identifies regions with consistent predictions by integrating multiple models, 
allowing for a comprehensive assessment of predictions with high reliability2,47. As a result, ensemble modeling 
improves prediction accuracy by combining various models instead of depending on a single uncertain 
forecast47–50. Five prediction models were employed for spatial risk modeling, including two regression-based 
models: the Generalized Linear Model (GLM) and Multivariate Adaptive Regression Splines (MARS), as well 
as three machine-learning models: Maximum Entropy (MaxEnt), Generalized Boosting Model (GBM), and 
Random Forest (RF). The performance of these models was evaluated using the AUC and the True Skill Statistic 
(TSS)51. To facilitate this assessment, five hundred pseudo-absence points were randomly created throughout 
the study area, ensuring they were located outside a 2 km radius from each agricultural damage point52. 75% 
of the agricultural damage points identified by the ICP were designated as the training dataset, while the 
remaining 25% served as the test dataset. For enhanced reliability, analyses were conducted with 20 replicates 
at a prevalence of 0.5, meaning that agricultural damage points and pseudo-absence points were given equal 
weights53,54. The average contributions of variables from five models for risk assessment were computed using 
Biomod2. Furthermore, the response curves illustrating how agricultural damage points reacted to variables 
in the most accurate model were presented for the study area. The continuous ensemble spatial risk map was 
transformed into a binary map by applying the 10 th percentile of higher risk value at the conflict records within 
the ICP dataset55. Patches containing agricultural damage points identified by the ICP were classified as spatial 
risk patches, while very small risk patches (less than 8 km²) were excluded from consideration. The conversion 
to a binary map and the creation of patches were accomplished using ArcGIS.

Hotspots of Indian crested porcupine crop damage
The Optimized Hot Spot Analysis tool in ArcGIS was employed to detect areas of significant crop damage 
attributed to the ICP. A grid with dimensions of 1.5 × 1.5 km² was utilized to divide the study area, allowing 
for the counting of damage records (n= 111) within each grid cell. The Getis–Ord Gi* statistic was computed 

Variable categories Variables (unit in parenthesis) Selected by MaxentVariableSelection VIF value Final selection

Human

Distance to villages (degrees) * 1.13 *

Distance to roads (degrees) * 1.43 *

Population density of villages (person/km2) * 1.35 *

Human footprint

Land-cover

Orchards density (0–1) * 1.27 *

Croplands density (0–1) * 1.36 *

NDVI (−1–1) * 1.19 *

Water Distance to rivers (degrees)

Protection Distance to CAs (degrees) * 1.18 *

Topography
Elevation (meter)

Slope (degrees)

Climate

Annual mean temperature (BIO1) (⁰C)

Mean diurnal range (BIO2) (⁰C)

Isothermality (BIO3) (%)

Temperature seasonality (BIO4) (%)

Max temperature of warmest month (BIO5) (⁰C)

Min temperature of coldest month (BIO6) (⁰C)

Temperature annual range (BIO7) (⁰C)

Mean temperature of wettest quarter (BIO8) (⁰C)

Mean temperature of driest quarter (BIO9) (⁰C) * 1.67 *

Mean temperature of warmest quarter (BIO10) (⁰C)

Mean temperature of coldest quarter (BIO11) (⁰C)

Annual precipitation (BIO12) (mm)

Precipitation of wettest month (BIO13) (mm)

Precipitation of driest month (BIO14) (mm) * 1.58 *

Precipitation seasonality (BIO15) (%)

Precipitation of wettest quarter (BIO16) (mm)

Precipitation of driest quarter (BIO17) (mm)

Precipitation of warmest quarter (BIO18) (mm)

Precipitation of coldest quarter (BIO19) (mm)

Table 1. Environmental variables utilized in spatial risk modeling of agricultural damage caused by the Indian 
crested porcupine within the study area in southeastern Iran.
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based on the geographic coordinates of the damage records located in each cell30,31. This statistic is derived from 
a z-score, which reflects the distance between cells and the number of damage incidents recorded in each cell. 
Cells that exhibited a high frequency of damage records were assigned higher scores and identified as hotspots30.

Results
Ensemble modeling and variable contribution
MaxentVariableSelection identified nine environmental variables for spatial risk modeling that exhibited the 
lowest Akaike and the highest AUC. VIF analysis did not exclude any of these nine variables (see Table 1). In 
the Biomod2 analyses, all models demonstrated excellent performance, with AUC and True Skill Statistic (TSS) 
values exceeding 0.9 and 0.75, respectively, with the Generalized Boosted Model (GBM) achieving the highest 
scores (refer to Supplementary Information: Table S1). According to the average contributions of the variables 
across five models, the key factors affecting spatial risk modeling of agricultural damage from the ICP in the 
study area were identified as distance to villages, orchard density, cropland density, and NDVI (see Table 2).

As the distance from villages increased, the probability of agricultural damage declined sharply before 
stabilizing at approximately 1 km. In contrast, the probability of agricultural damage rose as the distance from 
roads increased, eventually stabilizing at around 4 km. A higher human population density was associated with 
a gradual increase in the likelihood of agricultural damage, which leveled off at approximately 17,000 people 
per km² (Fig. 2). Similarly, greater densities of orchards and croplands led to a notable rise in the probability 
of agricultural damage. An increase in NDVI values also corresponded to a higher likelihood of agricultural 
damage, stabilizing at 0.15 on a scale ranging from − 1 to 1. Conversely, the probability of agricultural damage 
decreased as the distance from CAs increased, stabilizing at a distance of 8 km (Fig. 2). Furthermore, as the mean 
temperature during the driest season dropped from 33 °C to 25 °C, there was a sharp decline in the likelihood of 
agricultural damage. A similar trend was observed with precipitation levels during this season; as they rose from 
2 mm to 8 mm, the probability of agricultural damage steadily decreased.

The ensemble spatial risk map revealed that the west regions of the study area had the highest probabilities of 
agricultural damage due to the effects of the ICP. Furthermore, several isolated high-risk areas were identified in 
the eastern and southeastern parts of the study area (refer to Fig. 3). The spatial risk models from five different 
analyses are illustrated in Fig. S3.

Spatial risk patches
A total of nine spatial risk patches, which represent around 8% of the study area, were identified as suffering 
agricultural damage due to the ICP. The largest of these patches are Patch1 (approximately 23,500 km² with 49 
damage records), Patch2 (about 8,600 km² with 13 damage records), and Patch3 (around 5,700 km² with 10 
damage records), situated in the southwest, west, and northwest regions of the study area, respectively. Together, 
these three patches accounted for 80% of all predicted agricultural damage areas linked to the ICP within the 
study area (refer to Fig. 4; Table 3). Additionally, CAs covered roughly 8% of the predicted spatial risk patches.

Crop damage hotspots
Crop damage hotspots were mainly located in the western parts of the study area (Fig. 5). These hotspots were 
mainly concentrated in Patch1 and Patch2. The overlap between risk patches and hotspots was about 85%. The 
optimized hotspot analysis revealed that just 2.4% of these hotspot areas fell within the CAs.

Discussion
This research was carried out in southeastern Iran to forecast spatial risk patches for agriculture and crop damage 
attributed to the ICP. Our results revealed that the key factors influencing the spatial risk of agricultural damage 
from the ICP in the region were the distance to villages, orchards density, croplands density, and NDVI. The 
west regions exhibited the highest likelihood of human-ICP conflicts. We identified nine spatial risk patches for 
agricultural damage caused by the ICP, three of which accounted for approximately four-fifths of the total area 
of all identified risk patches. Furthermore, our results showed that the majority of high-risk damage areas (92%) 
were located outside the CAs.

Variables contribution
Previous studies have primarily focused on the habitat suitability of the ICP15, and its closely related species5,56,57. 
Additionally, these studies have utilized land cover, climatic, and topographic variables to assess habitat 
suitability, often neglecting human-related factors such as villages and roads. Croplands have been identified as 
the most important variable influencing the habitat suitability of the crested porcupine in northern Italy57. In 
addition, croplands and orchards were the second and fourth most important variables in the habitat suitability 
of the crested porcupine in Central Italy5, which aligns with our findings. However, in southern Italy, this species 
tends to inhabit forested areas in lower latitudes –where the species never been presence- more frequently due 

Distance to villages Distance to roads Human population density Croplands density Orchards density NDVI Distance to CAs BIO9 BIO14

Mean 19.6 7.9 7.8 15.1 16.2 12.3 8.7 7.3 5.1

Standard deviation 1.9 1.1 2.2 2.5 2.3 1.4 2.1 1.3 1.1

Table 2. Average and standard deviation of variable contributions in the spatial risk assessment of agricultural 
damage inflicted by the Indian crested porcupine within the study area in southeastern Iran.
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to climate change39. Croplands were also identified as the second most important land cover type for the habitat 
suitability of the ICP in Iraq15. Since the orchards and croplands are situated near the villages, their proximity 
is considered the most significant factor for ICP in our study area. NDVI illustrates the trend of vegetation 
and indicates that the suitable range for the ICP includes woodlands in addition to orchards and croplands. 
The crested porcupine is also associated with forests and woodlands in both southern and northern Italy39,57. 
Furthermore, NDVI has proven to be an important variable for assessing habitat suitability for the ICP in Iraq15.

Spatial risk patches and implication for mitigating conflicts
Previous research has indicated that the population of the ICP has increased in some areas while decreasing in 
others across southwestern Asia15. In regions experiencing population growth of the ICP and, consequently, 
greater damage to agricultural products, implementing a conservation program for the Persian leopard—its 
only natural predator—could be effective. Agricultural damage typically occurs during the warm season in farms 
and orchards, where various food sources are available for the ICP57. Considering the significant role that the 
densities of orchards and croplands play in contributing to ICP conflict within the study area, farmers should 

Fig. 2. Response curves depicting the agricultural damage attributed to the Indian crested porcupine in 
relation to environmental factors in the study area. The analysis employed the Generalized Boosted Model 
(GBM), recognized as the most precise model for this purpose. The Y-axis indicates the likelihood of 
agricultural damage caused by the Indian crested porcupine, with each degree representing approximately 11 
km.
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implement measures to prevent ICPs from entering their fields and orchards, such as erecting fencing around 
their owned lands. Research indicates that, to date, there have been no reported conflicts between humans and 
porcupines in Rome. This may be attributed to the porcupines’ strictly nocturnal behavior and the establishment 
of protective fencing around local agricultural areas, which likely facilitates coexistence between porcupines 
and humans58. We found orchard density to be the second top variable contributing to ICP conflict in the study 
area, therefore we recommend installing thick fencing around each tree trunk or placing stones around the bases 
of trees can help prevent damage. In some regions of Pakistan, fences and dogs are employed to mitigate crop 
damage caused by ICPs59.

Given the limited research on human-ICP conflict, we compared our findings with those related to a closely 
related species, the crested porcupine, in Italy, which represents a limitation of our study. Overall, the strategies 
recommended by Italians to mitigate conflict and deter porcupines from accessing orchards and agricultural 
lands, such as fencing, could also be applicable in Iran. This approach has also been proposed for the ICP in 
Pakistan, which shares similar ecological conditions with southeastern Iran. In addition, spatial risk modeling 
had some limitations due to scarcity of long-term monitoring data constrains predictive accuracy over time, 
incomplete geospatial records of conflict and reliance on simulated data rather than field observations in data-
poor regions60. Despite several limitations, spatial risk modeling has become a crucial tool for understanding 
and mitigating HWC.

In general, educating farmers about best practices for managing interactions with ICPs can empower them 
to implement effective strategies that reduce crop damage. Workshops and training sessions can teach farmers 
about crop protection methods and the biology of ICPs61. In addition, increasing local awareness about the 
benefits of ICPs in their area—such as the use of burrows by other animals as shelters and the role of burrows 
in retaining water for seeds—can be effective in preventing the decline of the ICP population due to human 
intervention15,62.

Fig. 3. Ensemble spatial risk model illustrating agricultural damage caused by the Indian crested porcupine 
in the study area based on five models of Generalized Linear Model (GLM), Multivariate Adaptive Regression 
Splines (MARS), Maximum Entropy (MaxEnt), Generalized Boosting Model (GBM), and Random Forest (RF). 
ArcGIS software version 10.1 ( h t t p s :  / / w w w .  e s r i . c  o m / e n -  u s / a r  c g i s / p  r o d u c t  s / a r c g  i s - p r o / r e s o u r c e s) was used to 
generate the figure.
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Conclusions
Anthropogenic factors and land cover were the primary contributors to agricultural damage caused by the ICP 
in the study area. Approximately 8% of the study area is classified as being at high risk for human-ICP conflict. 
Prompt action is necessary to tackle agricultural damage in the nine risk areas identified in this study, particularly 
in the three key patches located in the western region of the study area. These three patches represent four-fifths 
of all identified risk areas, and if budget limitations arise, conflict mitigation efforts can be concentrated on these 

Patch number Area (km2)

Conservation areas 
within patches

Conflicts records within patchArea (km2) Percent

1 23556.52 1842.12 7.82 49

2 8579.49 752.185 8.77 13

3 5687.75 329.43 5.79 10

4 1905.94 83.82 4.39 9

5 1667.69 694.86 41.66 5

6 1865.44 0.35 0.02 7

7 2480.46 66.79 2.69 2

8 508.51 0 0 3

9 1011.25 0 0 3

Total 47263.05 3769.55 7.97 101

Table 3. Characteristics of the predicted Spatial risk areas for agricultural damage caused by the Indian crested 
Porcupine within the study area in southeastern Iran (Refer to Fig. 4 for patch numbers).

 

Fig. 4. Spatial risk patches for agricultural damage attributed to the Indian crested porcupine (Details 
regarding patch numbers can be found in Table 3). ArcGIS software version 10.1 ( h t t p s :  / / w w w .  e s r i . c  o m / e n -  u s / 
a r  c g i s / p  r o d u c t  s / a r c g  i s - p r o / r e s o u r c e s) was used to generate the figure.
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three sites. To alleviate these conflicts, it is strongly recommended to implement fencing around private lands 
and enhance local knowledge.

Data availability
The datasets used and/or analyzed during the current study available from the corresponding author on reason-
able request.
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