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A B S T R A C T   

Nepeta crispa Willd. is a very rare medicinal plant that grows in a very limited habitat in western Iran. In recent 
years, due to climate change, many plants have become endangered, which poses a very serious threat to very 
rare species such as N. crispa Willd. In the present study, we aimed to model the current and future potential 
geographical distributions and identify the most relevant environmental factors influencing the distribution of 
N. crispa Willd. an endemic plant species in west of Iran. The species distribution was modeled with the 
maximum entropy model by using presence data (160 sampling points) and a total of 15 climatic and envi-
ronmental variables. To predict possible shifts in the geographical distribution due to climate change, we used 
the Representative Concentration Pathway (RCP) 2.6 and RCP 8.5 for 2050 and 2070 for two Global Climate 
Models (GCMs). The jackknifing method was used to evaluate the contribution of the environmental variables to 
the model. We found that elevation, annual mean temperature, geology and precipitation of the driest quarter 
were the most important variables in determining the habitat of N. crispa. The species habitat suitability maps 
and models were efficient in predicting the habitat suitability distribution for N. crispa in the current conditions 
with an Area Under the ROC Curve (AUC) of 0.983. Our modeling approach also demonstrated that climate 
change would expand the habitat range of N. crispa in the Alvand mountain areas in Iran towards higher 
elevation (above 2000 m.a.s.l). Conservation measures should therefore predominantly concentrate on the 
elevation range between 2000 and 3500 m.a.s.l. Knowledge of current distribution of the N. crispa and predicting 
its potential future geographical distribution under different climate change scenarios provide useful information 
for conservation actions in Iran.   

1. Introduction 

Growth of human populations, land-use change, habitat destruction 
and fragmentation, over-exploitation of natural lands, and invasion of 
alien plant species are important factors that lead to species extinction at 
worldwide level (dos Santos et al., 2021; Heydari et al., 2012; Kumi 

et al., 2021; Ramachandran et al., 2018; Waddell et al., 2020). As a 
result, one-fifth of plant species are at risk of extinction and habitat loss 
(Brummitt and Bachman, 2010). Nowadays, one of the biggest global 
challenge is climate change and its effects on natural ecosystems (Cha-
pin and Díaz, 2020; Vale et al., 2021). Climate change is known to in-
fluence extinction and geographical distributions of various species due 
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to temporal reproductive isolation (Ebrahimi et al., 2017; Meynecke, 
2004; Monzón et al., 2011). The loss of any species could have signifi-
cant negative effects on ecosystem functions and stability (Worm and 
Duffy, 2003). On the other hand, changes in the distribution ranges of 
plant species and vegetation patterns will affect how climate change is 
experienced across the landscape (Lawler et al., 2009; Roberts et al., 
1997; Tang et al., 2018). 

Understanding how species will respond to climate change (e.g. how 
they are distributed under future climate change scenarios), is critical to 
effective management and conservation of biodiversity (Çoban et al., 
2020; Mendoza-González et al., 2013; Naudiyal et al., 2021). This is 
particularly noteworthy, as future climate predictions demonstrate a 
rising trend in temperature and greenhouse gas emissions. For example, 
based on the Fifth Assessment Report (AR5) produced by the Intergov-
ernmental Panel on Climate Change (IPCC), global warming is antici-
pated to average 0.3–4.5◦ C by 2100 with a continuous upward trend 
(Stocker et al., 2013). Habitat restoration, one of the basic measures for 
plant species protection, requires accurate information on the current 
and future distributions of species (i.e. under climate change circum-
stances) in each habitat (Cao et al., 2016; Panwar and Tarafdar, 2006; 
Zhang et al., 2019). Thus, understanding the relationships of species 
with environmental factors and predicting their changes have become 
one of the fundamental challenges for ecologists (Dai et al., 2013; Kong 
et al., 2021; Lundholm and Larson, 2003). Climate change has major 
effects on the diversity of vegetation around the world, especially for 
arid and semi-arid regions in southwestern Asia such as Iran with high 
diversity and richness of vegetation (Talebi et al., 2014). 

In the west of Iran, the Zagros forest ecosystem is a region of high 
ecological significance. This area of about 6 million ha is spread on the 
western and southern slopes of the Zagros Mountains from northwest to 
southeast of Iran with an elevation range of 200 to 4500 m.a.s.l. Forests 
of the Zagros region cover 44% of Iran’s forests but in the recent de-
cades, disturbances associated with climate change (e.g. drought, fires, 
pathogens outbreaks) have largely impacted the dynamics and stability 
of this ecosystem (Haidarian et al., 2021; Karami et al., 2018; Naghipour 
Borj et al., 2019). The high ecological value of Zagros is linked to the 
presence of endemic plant species in the mountainous areas. One of 
these species is Nepeta crispa Willd. which grows in Alvand mountain 
areas in Hamadan Province in western Iran. Because this species has 
significant medicinal properties (Alizadeh and Salimi, 2018; Sonboli 
et al., 2017); its habitat is highly vulnerable to destruction and extensive 
human exploitation, and its survival is greatly threatened Conservation 
of this species has to take into account how its distribution may be 
affected by various environmental and anthropogenic factors under 
different climate change scenarios. In this context, species distribution 
modeling (SDM) is a key tool to develop predictions to understand the 
future distribution of plant communities (Qin et al., 2020; Zhang et al., 
2016). SDM is based on suitability indices to describe the relationships 
of diverse ecological attributes and evaluate the appropriateness of the 
habitat for a particular species. There are several modeling algorithms 
such as CLIMEX (Sutherst and Maywald, 1985), maximum entropy 
(Maxent) (Phillips et al., 2006), and BIOMAPPER (Hirzel et al., 2002) to 
study species ecological requirements and distribution areas and to 
predict habitat quality and spatial distribution of plant species under the 
influence of environmental factors (Borthakur et al., 2018; Eshetae 
et al., 2021; Hirzel and Guisan, 2002; Yang et al., 2013). In principle, 
these algorithms identify the predictor variables as well as their re-
lationships with the response variables and predict the habitat suit-
ability for a given species in its distribution area. Modeling algorithms of 
these models are continually improved to favor the widespread use of 
habitat utility models in the study of environmental, biogeographical, 
conservation, and species management issues (Bradley et al., 2012; 
Tsiftsis and Djordjević, 2020). 

Maxent model is one of the models mostly used for predicting the 
distribution of species due to the numerous advantages it offers such as 
the use of categorical data and a good performance in predicting the 

distribution of species even with an incompleted dataset and limited 
sample size (Çoban et al., 2020; Marini et al., 2010; Pearson et al., 
2007). Maxent uses only presence points and compares values of envi-
ronmental layers for occurrence points with these values in background 
points to create a habitat suitability map (Phillips et al., 2006). In this 
study, we have used the Maxent model to (i) predict the current and 
future potential geographical distributions of N. crispa in the west of 
Iran; and (ii) identify the most significant environmental factors influ-
encing the distribution of the species. To achieve these aims, we have 
used presence data of the species, environmental variables (i.e. biocli-
matic (current and future), edaphic and topographic variables), and two 
climate change scenarios of the Representative Concentration Pathway 
(RCP) 2.6 and RCP 8.5 for 2050 and 2070 for two Global Climate Models 
(GCMs). The results of this study could help to better understand the 
trends and mechanisms of species adaptation and distribution in un-
certain environmental futures. They could also provide conceptual 
foundations and a basis for more adapted management measures of 
endemic vegetations highly endangered by climate change. 

2. Materials and methods 

2.1. Study area and sampling 

The study area (19,368 km2) is located in Hamadan Province in west 
of Iran (47◦45′39′′-49◦29′ 31′′ N, 34◦00′39′′-35◦42′ 35′′ E) (Fig. 1), 
elevation ranges from 1448 to 3475 m.a.s.l. The climate is cold and 
semi-arid with heavy snowfall in winter and mild sunny summer. The 
average precipitation is 350 mm and the long-term average temperature 
is 12 ◦C. To locate the sites with N. crispa, we used information obtained 
from local experts and natives, followed by a field survey. Sampling 
(recording of presence points of N. crispa) was done by the stratified 
random sampling method in spring 2019. In total, 160 sampling points 
of presence records of the species were collected (Fig. 1). To minimize 
spatial-autocorrelation, a cell of 1×1 km was considered to exclude any 
occurrence points of >1 km with another occurrence points by the 
Spatially Rarify Occurrence Data tool in the SDMtoolbox (Almasieh 
et al., 2019; Brown, 2014). Finally, 134 occurrence points were 
considered for modeling. 

2.2. Environmental variables 

We initially used 15 environmental variables that may affect the 
species distribution (Parra and Monahan, 2008). They include: slope 
(percent), aspect (degree), elevation (m.a.s.l.), type of soil, solar radia-
tion (W/m2), geology, distance from river (m), annual mean tempera-
ture (◦C) (bio1), mean temperature diurnal range (◦C) (bio2), 
isothermality (bio3), temperature seasonality (bio4), annual precipita-
tion (mm) (bio12), precipitation of the driest month (mm) (bio14), 
precipitation seasonality (bio15) and precipitation of the driest quarter 
(mm) (bio17) (Jiang, 2018; Choudhary et al., 2019) (Table 1). 

The SRTM (Shuttle Radar Topography Mission data) (see htt 
ps://earthexplorer.usgs.gov/) was used to prepare the digital eleva-
tion model (DEM) and then slope and aspect maps were extracted from 
the DEM (Almasieh et al., 2018; Hosseini et al., 2013). Spatial analyst 
tool in ArcGIS 10.4 software was used to generate slope and aspect 
variables. Climatic variables were obtained from the WorldClim Data-
base (http://www.worldclim.org) (Jayasinghe and Kumar, 2019) 
(Table 1). The data in this database is in raster format at a scale of 30 s 
with a spatial resolution of 1 km2 and in the coordinate system 
CGS_WGS_1984. Due to the spatial resolution of 1 km2 of climate data, 
other data including topography and geology data with a pixel size of 1 
km2 were used (Jayasinghe and Kumar, 2019). High correlation be-
tween the enviromental variables may cause errors in the model 
(Ahmadzadeh et al., 2013; Boria et al., 2014; Jayasinghe and Kumar, 
2019). Therefore, the correlations between the bioclimatic variables 
were studiedto identify highly correlated variables (i.e. Pearson 
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correlation coefficient | r | >0.75). Finally, out of 19 bioclimatic vari-
ables, 8 variables that were slightly correlated with each other (| r | 
<0.75) were selected for model processing (Table 1). These 8 climatic 
variables are: annual mean temperature (bio1), mean diurnal range 
(bio2), isothermality (bio3), temperature seasonality (bio4), annual 
precipitation (bio12), precipitation of the driest month (bio14), bio15 
(Precipitation Seasonality and precipitation of the driest quarter (bio17) 
(Choudhary et al., 2019; Jiang, 2018). 

Eventually, the provided layers were transformed to ASCII format for 

subsequent processing in Maxent (Jayasinghe and Kumar, 2019). 
Annual daily solar radiation (kJ m− 2 day− 1) computed over the period 
1970–2000 was also used for habitat modeling. Due to importance of 
water resources for plant species, distance from rivers was obtained 
using Euclidean Distance tool in ArcGIS. 

2.3. Modeling the effect of climate on the distribution of N. Crispa 

We model N. crispa future distribution using two different climate 

Fig. 1. Location of the studied habitat in Hamadan Province and picture of the plants.  
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change scenarios: RCP2.6 and RCP8.5 for 2050 and 2070 respectively. 
These scenarios were performed in the form of two Global Climate 
Models (GCMs), namely Hadley Centre Global Environmental Model, 
version 2-Carbon Cycle (HadGEM2-CC) and the Community Climate 
System Model, version 4 (CCSM4) (Ramos et al., 2019). The accuracy 
and efficiency of the HadGEM2-CC model in the Northern Hemisphere 
has been recognized (Sutton et al., 2014). It has also been reported that 
the CCSM4 model was efficient in modelling temperature and precipi-
tation variables for Asia (Chaturvedi et al., 2012). These scenarios 
include: 1) RCP 2.6 named peak scenario, which indicates that the 
radiative forcing level reaches 3.1 W/m2 by mid-century however 
returns to 2.6 W/m2 by 2100., and 2) RCP 8.5, which radiative forcing 
reaches >8.5 W m− 2 by 2100 and continues to increase for a certain 
amount of time (Cabrera and Selvaraj, 2020). In the present study, in 

order to reduce the uncertainty duo to future climate, we used two main 
GCMs (CCSM4 and HadGEM2-CC) that have been used in other studies 
in Iran (Alavi et al. 2019; Taleshi et al. 2019; Ahmadi et al. 2020). 

The Maxent model (Maxent software version 3.4.1) was used to 
model the habitat of N. crispa. This model requires the presence records 
of the species and predictive environmental variables (Phillips et al., 
2006; Zamora-Gutierrez et al., 2021). In this study, 70 percent of the 
species presence points were randomly selected for the modeling and the 
remaining 30 percent were used to evaluate the model (Evcin et al., 
2019). The important source of uncertainty in SDM is uncertainty due to 
model specification. In the case of MaxEnt, the method for generating 
background samples from presence-only data is a source of variability 
(Merow et al. 2013). in order to reduce uncertainty, we tried to generate 
background points 10 times and run the model for each dataset. 

The jackknifing method was used to evaluate the contribution of the 
various bioclimatic variables to the model. Predictors that produced the 
most training gains were selected as the most important bioclimatic 
attributes (Jayasinghe and Kumar, 2019). The response curves that 
demonstrate the relationships between the probability of the plant 
presenceand the environmental variables were evaluated. In a jackknife 
method, the model is obtained from each factor that indicates which 
attributes have the best information independent from other variables 
(Jayasinghe and Kumar, 2019; Kalle et al., 2013). The receiver operating 
characteristic (ROC) curve and the area under the curve (AUC) were 
produced to examine model efficiency (Elith et al., 2006). The model 
was run 10 times with 1000 repetitions each time. The performance of 
the model was evaluated using the AUC, which is a quantitative indi-
cator that shows the performance and strength of the model. A value of 
0.5 indicates a poor performance of the model, values between 0.5 and 
0.7 are appropriate, between 0.7 and 0.9 are good and a value >0.9 is 
excellent (Elith, 2000). Eventually, the quantitative and continuous 
habitat map became a binary map based on the maximum logistics 
threshold to the Maxent feature in the model (Jiménez-Valverde and 
Lobo, 2007). 

3. Results 

3.1. Importance of environmental variables 

The results of jackknife method show that among the various vari-
ables, elevation, annual mean temperature (Bio1), geology and precip-
itation of the driest quarter (Bio17) are the most important variables in 
determining the habitat of N. crispa. Among the input environmental 
variables, elevation is the most influential and account for 26.4 % of the 
distribution model while annual mean temperature (Bio1) and geogra-
phy account for 19% and 18.1%, respectively (Table 3). 

The variable ‘precipitation of the driest month’ (Bio14) has a share of 
0.2, which is the lowest contribution. The variable importance result 
indicates that the habitat of this species was inversely related to the 
average annual temperature as the species was more abundant at higher 
elevations where the temperature was lower than at lower elevations. 

Table 1 
correlation test of explanatiory variables.  

Layer Bio1 Bio12 Bio14 Bio15 Bio17 Bio2 Bio3 Bio4 srad Elevation Dis_river Slope 

Bio1  1.0            
Bio12  0.05  1.0           
Bio14  − 0.45  0.10  1.0          
Bio15  0.25  0.26  − 0.49  1.0         
Bio17  − 0.68  0.05  0.55  − 0.24  1.0        
Bio2  0.52  0.14  − 0.40  0.27  − 0.47  1.0       
Bio3  0.44  0.02  − 0.07  − 0.20  − 0.22  0.38  1.0      
Bio4  − 0.22  − 0.17  0.51  − 0.21  0.47  − 0.51  0.10  1.0     
srad  − 0.22  − 0.17  0.51  − 0.31  0.47  − 0.51  0.10  0.58  1.0    
Elevation  − 0.55  − 0.05  0.19  0.11  0.30  − 0.24  − 0.43  − 0.06  − 0.06  1.0   
Dis_river  − 0.27  − 0.12  0.27  − 0.51  0.54  − 0.27  − 0.04  0.45  0.45  0.08  1.0  
Slope  − 0.41  0.18  − 0.06  0.42  − 0.06  − 0.30  − 0.58  − 0.27  − 0.27  0.58  − 0.16  1.0  

Table 2 
Environmental variables used used for habitat modeling of N. crispa in the study 
area.  

Type Abbreviations Description Unit Source 

Bioclimatic Bio1 Annual mean 
temperature 

◦C https:// 
www.world 
clim2.org 
(Fick & 
Hijmans, 
2017) 

Bio2 Mean Diurnal 
Range (Mean of 
monthly (max 
temp – min 
temp)) 

◦C 

Bio3 Isothermality 
(BIO2/BIO7) 
(×100) 

◦C 

Bio4 Temperature 
Seasonality 
(standard 
deviation ×100) 

◦C 

Bio15 Precipitation 
Seasonality 
(Coefficient of 
Variation)  

Bio12 Annual 
precipitation 

Mm 

Bio14 Precipitation of 
the driest month 

Mm 

Bio17 Precipitation of 
the driest quarter 

Mm 

Topography SLP Slope Percentage (DEM) 
ASP Aspect Class (DEM) 
DEM Elevation m.a.s.l. (https://eart 

hexplorer. 
usgs.gov/) 

solar 
radiation 

SRAD Solar radiation (kJ m-2 
day-1) 

Fick & 
Hijmans, 
2017 

soil SOIL Types of soil CLASS (DoE, 2018) 
Distance 

from 
rivers 

DISR Distance from 
rivers 

M (FRWMO, 
2010) 

Geology GEO Geology CLASS (DoE, 2018)  
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The Maxent model’s jackknife procedure of variable importance in-
dicates that annual mean temperature (coefficient of variation) (Bio1), 
geography and elevation are the key predictors of N. crispa habitat dis-
tribution (Fig. 2). According to the response curves, higher probabilities 
of N. crispa presence are obtained when the annual mean temperature 
(Bio1) is below 4.5 ◦C, while its distribution is limited at >4.5 ◦C. For the 
variables bio2 (mean annual temperature), bio3 (isothermality) and 
elevation (DEM), the optimal habitat suitability is <12 ◦C, <31.54 ◦C 
and between 2000 m and 3500 m.a.s.l respectively. Outside these 
ranges, the suitability of the habitat decreases (Fig. 3). 

The response curves are shown Fig. 3. For aspect, the numbers 1 to 9 
represent the flat area and the directions north, northeast, east, south-
east, south, southwest, west and northwest, respectively. The probabil-
ity of presence is the highest in the northern, northeastern and eastern 
aspects and the lowest in flat and western positions. For geology, each of 
the numbers 1 to 43 indicates a specific class, a peak of presence was 
detected in class 5 (i.e. metamorphic rocks: two mica Hornfels; cordi-
erite Hornfels; andalusite-sillimanite Hornfels and locally 

metamorphosed carbonate rocks (skarn)) and in class 23 (i.e., limestone, 
argillaceous limestone; tile red sandstone and gypsiferous marl). In the 
soil diagram, the numbers 1 to 5 represent the Rock Outcrops/Entisols 
(1), Rock Outcrops/Inceptisols (2), Aridisols (3), Entisols/Inceptisols (4) 
and Inceptisols (5), respectively. The highest distribution of the species 
is in the first class (Parra and Monahan, 2008) (Fig. 3). 

3.2. The species distribution model and its accuracy 

Results on the accuracy of the models implemented in this study 
showed that the species habitat map is efficient to determine the habitat 
suitability distribution for N. crispa with an AUC of 0.983 (Fig. 4). The 
models produced to predict the species distribution under different 
climate change scenarios are also very accurate (AUC values >0.9). 
These results indicate that the distribution maps (Fig. 5) under different 
RCP scenarios have sufficient accuracy and reliability. 

3.3. Current and future suitable habitats 

The maps of the potential habitat of N. crispa under the current 
conditions and in 2050 and 2070 under different models and climat 
change scenarios are shown Fig. 5. The maps indicate that the potential 
habitat areas of the species is likely to increase in the Province. At the 
present time, 4.14% of the study area, which is equivalent to an area of 
802.19 km2, is suitable for the species habitat (Table 4). 

In the future, the habitat area will increase under the changing cli-
matic conditions (CCSM4 model and scenario RCP 2.6) to reach up to 
9.69% in 2050 and 14.74% in 2070. Results are globally comparable 
between the two climate change scenarios and models althought species 
distribution will be larger with the HadGEM2-CC model than with the 
CCSM4 model (Fig. 5). A more detailed analysis of the maps, reveals that 
the species is likely to establish in the central areas of Hamedan Province 
where environmental conditions are more favorable to the species in 
particular due to a higher elevation and a lower air temperature, than in 
the other areas (Fig. 5). 

The average elevation of the areas where the species is currently 
located is about 2501 m.a.s.l. and is expected to reach 2512 m.a.s.l for 

Table 3 
Percentage contribution and permutation importance of the predictor variables. 
Abbreviations are indicated Table 2.  

Variable Percent contribution Permutation importance 

bio1 19  14.7 
bio2 1.8  10.4 
bio3 1.9  8.7 
bio4 0.5  3.2 
bio12 6.6  4.9 
bio14 0.2  0.3 
bio15 6.8  6.6 
bio17 0.2  2.3 
Aspect 3  0.2 
DEM 26.4  21.9 
Geo 18.1  11.6 
Distance from River 0.9  1.8 
Slope 6.9  7.1 
Soil 3.1  0.5 
SRAD 4.6  5.8  

Fig. 2. Results of jacknife evaluations of the relative importance of the predictor variables and their percentage contribution in N. crispa distribution. Abbreviations 
are indicated Table 2. 
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RCP8.5 (i.e. a 10 m.a.s.l. increase). In contrast, the average elevation is 
likely to decrease by 9–21 m.a.s.l. under CCSM4- RCP2.6 for 2050 and 
2070, HadGEM2-CC- RCP2.6 and RCP8.5 for 2050 and HadGEM2-CC- 
RCP2.6 of 2070, respectively (Table 4). 

Predictions of the areas covered by the species in the different 
elevation classes and climat change scenarios for 2050 and 2070 are 
indicated Fig. 6. In all scenarios and years, the species is not established 
at an elevation <1500 m.a.s.l. The largest increase in species area in the 
future will occur in the elevation class of 2000–2500 m.a.s.l. in CCSM4- 
RCP2.6 for 2070 but an increase is also noted in all other scenarios and 

in both 2050 and 2070. In contrast, the change in the species area is 
expected to be negligible whatever the scenarios and climatic models in 
both 2050 and 2070 for all other elevation classes (Fig. 6 and Table 5). 

4. Discussion 

4.1. Performance of Maxent model for predicting potential species 
distribution 

From our results, we can conclude that the Maxent model is a useful 

Fig. 3. Response curves for the major predictors of suitability habitats of N. crispa. Confidence intervals are shown in blue. Aspect: 1) flat, 2) North, 3) North-east, 4) 
East, 5) South-east, 6) South, 7) South-west, 8) West, 9) North-west. (For interpretation of the references to colour in this figure legend, the reader is referred to the 
web version of this article.) 
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Fig. 4. Results of the AUC (area under ROC) curves in developing habitat suitability model in current climate.  

Fig. 5. Projected distribution maps of N. crispa showing likely suitable areas under RCP 2.6, and RCP 8.5 in 2050 and 2070 with respect to the current time period.  
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tool for identifying the suitable habitat of Nepeta crispa Willd an endemic 
plant species in west of Iran with limited distribution. Besides, the model 
is also able to accurately predict the current and future distribution of 
this species. The use of species distribution models to identify suitable 
areas for the presence of medicinal plant species has been proven in 
many studies (Cahyaningsih et al., 2021; Kaky and Gilbert 2019Li et al., 
2020; Li et al., 2018; Rana et al., 2020). There are nonetheless some 
limitations to the use of SDMs, in particular when available data are 

insufficient for the modeling process to be effective (Kadmon et al., 
2003; Kaky and Gilbert 2019, 2008), or when forecasts include 
outsourcing of existing forecasters (Saupe et al., 2012). On the other 
hand, the use of only bioclimatic variables may cause bias in the results 
(Kaky and Gilbert 2019) because other factors such as human activities 
(Newbold et al., 2015), and dispersal limitations also play key roles in 
predicting the future distributions of such species (Ahmadi et al., 2020). 
Recent studies showed that despite some uncertainties, SDMs are reli-
able models to predict the geographic distribution of rare species even 
with consideration of future climate change (Ahmadi et al., 2020; Alavi 
et al., 2019). Of course, SDMs accurarydepends on the quality of the data 
in particular the consideration of human activity and species in-
teractions although such data are often not available in regions such as 
our study area. Therefore, in order to increase the accuracy of MaxEnt 
model in this study, we have added various environmental variables to 
the traditional bioclimatic variables. 

4.2. Influence of environmental variables on habitat suitability 

Among the climatic parameters, temperature and precipitation, 
which greatly vary over space and time particularly in moutaneous 
areas, are well known main factors influencing the dynamics of plant 
communities (Körner et al., 2016). Our modelling approach indicates 
that annual precipitation (bio12) and mean annual temperature (bio1) 
contributed 6.6 % and 19%, respectively to the distribution of N. crispa 
in the Alvand mountain areas of western Iran. The higher contribution of 
temperature than precipitation emphasizes the preference of this species 
for cool areas, more specifically within the optimal range of 3 ◦C to 
4.5 ◦C i.e. at elevations between 2000 and 3500 m. Alvand mountains 
offer a strong gradient of climatic conditions due to a large range of 
elevations (from 1448 to 3475 m.a.s.l), and contrasted seasons between 
cold winters with heavy snowfalls and mild sunny summers. The crucial 
role played by major bioclimatic factors in mountaineous areas is 

Table 4 
Percentage of change of area of suitability for N. crispa by 2050 and 2070 under 
RCP 2.6, and 8.5 using GCMs models.  

Year Global 
Climate 
Models 

RCPs Area 
(Km2) 

Area 
(%) 

Percentage of habitat 
changes compared to 
the present 

Current 
climate 

– –  802.19  4.14 0  

2050 CCSM4 RCP 
2.6  

879.89  4.54 9.69 

CCSM4 RCP 
8.5  

830.09  4.29 3.48 

HadGEM2- 
CC 

RCP 
2.6  

869.85  4.49 8.44 

HadGEM2- 
CC 

RCP 
8.5  

869.13  4.49 8.35  

2070 CCSM4 RCP 
2.6  

920.42  4.75 14.74 

CCSM4 RCP 
8.5  

805.89  4.16 0.46 

HadGEM2- 
CC 

RCP 
2.6  

846.37  4.37 5.51 

HadGEM2- 
CC 

RCP 
8.5  

810.99  4.19 1.1  

Fig. 6. Comparison of N. crispa area changes by elevation classes in current and future conditions predicted by the various climate change scenarios.  

Table 5 
Average elevation of the species habitat N. crispa under the current climate and different climate change scenarios for 2050 and 2070.  

Model Current 2050 2070 

CCSM4 HadGEM2-CC CCSM4 HadGEM2-CC 

RCP2.6 RCP8.5 RCP2.6 RCP8.5 RCP2.6 RCP8.5 RCP2.6 RCP8.5 

Elevation (m.a.s.l.)  2501.44  2492.71  2503.86  2488.19  2480.8  2480.41  2512.17  2489.15  2500.5  
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commonly found in other studies on medicinal plants in such regions. 
For instance, Wang et al. (2014) found the distribution of F. cirrhosa in 
the Nepal Himalayas was related to isothermality. Similarly, Rana et al. 
(2017) showed that bioclimatic variables derived from temperature 
were the most important to define the distribution of Fritillaria cirrhosa 
and Lilium nepalense in mountainious areas of Nepal and Liao and Chen 
(2021) also emphasized the key role of temperature in their species 
distribution models. In this study too, temperature has a crucial effect on 
the distribution of N. crispa, although the role of precipitation and 
related bioclimatic variables cannot be ignored. The greater role played 
by temperature over precipitation is based on the fact that the former is 
more limiting than the latter on the distribution of plant species in the 
upper slopes of the mountaineous areas (Grabherr et al., 1994; 
Melanie et al., 2016). 

These climatic characteristics can thus benefit to N. crispa develop-
ment as the optimal elevation range for for this species is between 2000 
and 3500 m.a.s.l. Elevation, annual mean temperature, annual precipi-
tation, and geology all together contribute by 70.1% in explaining the 
spatial distribution of the species in the Alvand mountain areas. Eleva-
tion is an obvious factor affecting climatic variables such as temperature 
and precipitation but is less used directly in species distribution studies. 
However, in our study elevation is a factor of particular interest for 
modelling the distribution of this species found in high elevation areas. 
Oke and Thompson (2015) also put forward the role of elevation in 
mountainious species distribution modeling: they found that thedrop of 
this variable had a negative effect on SDMs whereas its inclusion greatly 
improved the models accuracy. Bazrmanesh et al. (2019), Almasieh 
et al. (2018) and Ardestani et al. (2015) also introduced the elevation as 
the most important variable in the habitat modeling of Astragalus 
cyclophyllon, Bromus tomentellus and Centaurea pabotii respectively in 
other parts of Iran. In line with these studies, we showed that elevation 
was the most significant variable in the habitat distribution of this 
endemic plant species in the study area. 

4.3. Projected changes in coverage and distribution of N. Crispa 

The effects of the climate change on the geographical distributions of 
a wide range of mountainous plant communities have been reported 
across the world (Buitenwerf et al., 2015; Hamid et al., 2019; Khwar-
ahm, 2020; Palomo, 2017). Under the climate change scenarios of the 
CCSM4 and HadGEM2-CC models, the habitat range of the species will 
increase from 4.14 % of the total study area to 7.49 % and 5.45 % in 
2050 and 2070, respectively. Climate change scenarios predict a marked 
increase of the temperature and a reduction of the precipitation. A 
logical consequence is a shift in the spatial distribution of the species 
towards higher elevations to benefit from higher precipitations and 
cooler temperatures more adapted the plant development. Therefore, 
the habitats located at low elevations are particularly thereathened in 
the future. Previous studies, particulary in mountain ecosystems, have 
also reported the elevational shift in the distribution of plant commu-
nities under climate change scenarios in Iran (Almasieh et al., 2018; 
Bazrmanesh et al., 2019; Naghipour Borj et al., 2019) and other parts of 
the world (Braunisch et al., 2014; Bertrand et al., 2011; Khwarahm et al., 
2021; Walther et al., 2005). In our study, the distribution of N. crispa was 
accurately predicted but gain in accuracy could be obtained by using 
climate data with higher resolution as climate variability is huge in 
mountaineous areas like ours ( Lembrechts et al., 2019). 

4.4. Implications for ecological conservation and restoration 

Medicinal plants play a very important role in human health and are 
significant components of ecosystems. In recent decades, restoration and 
conservation of medicinal plants have gained a strong foothold in the 
ecosystem management of terrestial ecosystems worldwide. Species 
distribution models are thus useful tools that help us achieve restoration 
(Wang et al., 2015) and conservation (Gibbons and Lindenmayer 2007; 

Kumar and Stohlgren 2009) of rare and endangered species. Therefore, 
this study recommends that the conservation and management actions 
should predominantly concentrate on the elevation range between 2000 
and 3500 m.a.s.l. of the Alvand mountain areas in Hamadan Province in 
western Iran. Furthemore, developing new and/or updating ecosystem 
management guidelines should be considered as a preparatory step in 
understating the adaptibilty of the species under future climate change 
scenarios. For example, assisted migration could be an option for 
investigating the adaptibilty of the species in elevations higher than its 
current range. 

It is clear that the negative effects of climate change are increasing 
and may be amplified by human disturbances, especially land-use 
change and grazing in mountainous areas. Recent studies have shown 
that in addition to climate, human activities also affect the distribution 
of plants and have to be considered before undertaking conservation 
operations. Unfortunately, SDMs are not currently fully capable of 
including all the factors linked to human activity that affect plant species 
distribution and the resulting uncertainty have to be considered in 
designing conservation and rehabilitation programs. 

5. Conclusion 

Reliable and accurate predictions on the suitable area distribution of 
N. crispa in the current and future climate conditions were performed by 
Maxent model. Distribution models under climate change scenarios 
predict a geographical shift in the distributions of N. crispa towards 
higher elevations (above 2000 m.a.s.l). Among the variables tested, 
elevation, annual mean temperature, geology and precipitation of driest 
quarter were the most important in determining the habitat of N. crispa. 
Therefore, conservation and management actions should predominantly 
concentrate on the elevation range between 2000 and 3500 m.a.s.l. 
There is a need for developing new and/or updating forest management 
guidelines as a preparatory step in understating the adaptability of the 
species in the wake of climate change. Correlation-based modeling, 
future climate projections, and GIS techniques provide useful informa-
tion for conservation actions in Iran and in regions with similar climatic 
conditions. We highly recommend such studies to natural resources 
managers before planning conservation or restoration actions of rare 
endemic species in high elevation areas. 
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